ubuntu 16.04系统minicom退出方法

1)需使用Ctrl+a 进入设置状态
2)按z进入设置菜单
(1)S键:发送文件到目标系统中;
(2)W键:自动卷屏。当显示的内容超过一行之後,自动将後面的内容换行。这个功能在查看内核的啓动信息时很有用。
(3)C键:清除屏幕的显示内容;
(4)B键:浏览minicom的历史显示;
(5)X键:退出mInicom,会提示确认退出。

参考链接


minicom退出方法

hosts.allow、hosts.deny配置不生效的解决方法

通过配置hosts.allow、hosts.deny,控制SSH限制固定IP登陆

按照以往的方法,分别在hosts.allow、hosts.deny加入以下配置

保存后测试,发现配置无效,其他IP还是可以登陆成功。

解决方法如下:

hosts.allow和hosts.deny属于tcp_Wrappers防火墙的配置文件,而用tcp_Wrappers防火墙控制某一服务访问策略的前提是,该服务支持tcp_Wrappers防火墙,即该服务应用了libwrapped库文件。

查看某服务(如ssh)是否应用了libwrapped库文件的方法是:

没有显示,表示此服务器上安装的SSH没有应用libwrapped库文件,也就不能用tcp_Wrappers防火墙控制访问策略。(一般情况下服务器默认安装的SSH都是支持libwrapped库文件,这台服务器不清楚为什么不支持)

最终解决方法是重新安装SSH。

安装完成后再次查看是否应用了libwrapped库文件,显示支持。

再测试SSH登陆,配置生效。

参考链接


hosts.allow、hosts.deny配置不生效的解决方法

ubuntu 16.04删除被denyhosts阻止的IP地址

参照ubuntu 16.04防止SSH暴力登录攻击安装denyhosts之后,由于某些莫名的操作导致自己的一个登录地址被加入了阻止列表,尝试很多次之后,都没有办法恢复。于是找到如下脚本来进行删除操作:

生成脚本后,如下方式执行:

参考链接


int在32/64位系统中的字节数

 

64-bit data models
Data model short (integer) int long (integer) long long pointers,
size_t
Sample operating systems
SILP64 64 64 64 64 64 Classic UNICOS[41] (versus UNICOS/mp, etc.)
ILP64 16 64 64 64 64 HAL Computer Systems port of Solaris to the SPARC64
LLP64,
IL32P64
16 32 32 64 64 Microsoft Windows (x86-64 and IA-64) using Visual C++; and MinGW
LP64,
I32LP64
16 32 64 64 64 Most Unix and Unix-like systems, e.g., Solaris, Linux, BSD, macOS. Windows when using Cygwin; z/OS

参考链接


32位和64位系统区别及int字节数
64-Bit Programming Models: Why LP64?
64-bit computing
What decides the sizeof an integer?

ubuntu 16.04低延迟内核

在某些特殊环境中,比如音视频实时处理(比如MIDI),无线电数据的编解码(比如OpenAirInterface明确要求使用低延时内核)等情况下,我们希望系统尽可能的实时,同时又不会降低太多的性能(实时性越高,性能,功耗等的损失越大)。这种情况下,我们可以尝试使用低延时内核。

Linux提供了五种内核类型,对于内核类型的选择,可以参考如下的解释:

*******************************************

  • If you do not require low latency for your system then please use the -generic kernel.
  • If you need a low latency system (e.g. for recording audio) then please use the -preempt kernel as a fist choice. This reduces latency but doesn't sacrifice power saving features. It is available only for 64 bit systems (also called amd64).
  • If the -preempt kernel does not provide enough low latency for your needs (or you have an 32 bit system) then you should try the -lowlatency kernel.
  • If the -lowlatency kernel isn't enough then you should try the -rt kernel
  • If the -rt kernel isn't enough stable for you then you should try the -realtime kernel

*******************************************

目前(2018.02)为止,ubuntu官方库中提供前四种内核,我们一般建议使用lowlatency版本。可以使用如下命令安装:

目前,如果机器上使用了nvidia显卡,并且使用nvidia的闭源驱动的情况下,重启机器会无法进入图形界面,查看系统日志,出现如下错误信息:

解决方法如下:

注意,使用sudo apt-get dist-upgrade升级内核的时候,内核会被替换成generic版本,低延时内核需要手工重新安装一遍。

参考链接


PTP简介

在通信网络中,许多业务的正常运行都要求网络时钟同步,即整个网络各设备之间的时间或频率差保持在合理的误差水平内。网络时钟同步包括以下两个概念:

时间同步:也叫相位同步(Phase synchronization),是指信号之间的频率和相位都保持一致,即信号之间的相位差恒为零。

频率同步(Frequency synchronization):也叫时钟同步,是指信号之间在频率或相位上保持某种严格的特定关系,信号在其对应的有效瞬间以同一平均速率出现,以保证通信网络中的所有设备都以相同的速率运行,即信号之间保持恒定的相位差。

继续阅读PTP简介

网络时钟同步协议-- NTP, PTP

这篇文章介绍一下两个时钟同步的网络协议:NTP和PTP。
这里不涉及协议的原理和具体实现(想了解的可自行Google),重点是如何搭建起这两个服务。

1. NTP及PTP简介


NTP(Network Time Protocol)是用于不同计算机之间同步时钟的网络协议。
它的设计目标是使所有的互连的机器之间的时钟与UTC时间只相差若干毫秒

目前NTP协议已经是有第4版了,如果不需要了解NTP太多细节的话,看看这个wiki页面应该就足够了。需要注意的就是它有clock strata的概念。

PTP(Precision Time Protocol)看名字就知道是一个比NTP更精确的时钟同步协议了,PTP的设计目标是使机器之间的时钟偏差在sub-microsecond范围—这是wiki页面上提到的,有其他的地方说的是偏差若干微秒,本文搭建的环境中测量到的偏差也在微秒级别,没有到sub-microsecond级别。在使用PTP协议时,需要了解的主要概念点就是它的master/slave机制。

接下来我们就介绍我搭建NTP和PTP环境的过程,所用到的操作系统是CentOS6.5,内核版本是3.10。其他软件的版本会在用到时提及。

2. 搭建NTP服务


配置环境:两台服务器,一台做NTP服务器,一台做NTP的客户端。同时这两台机器都未联网。
NTP服务器地址:192.168.0.11
NTP客户端地址:192.168.0.22

A. 在192.168.0.11中启动NTP服务

B. 在192.168.0.22上启动NTP服务,选择192.168.0.11为NTP服务器

我的这两台实验机器是在同一个Rack的,结果显示差不多同步的偏差在30ms左右。
每个版本的ntpd配置文件可能有少许的差别,不过好在注释都做的不错,所以别的细节就不啰嗦了。

3. 搭建PTP服务


List of PTP implementations可以看到PTP的实现有很多很多种,可以是硬件实现的,可以是软件实现的也可以是软硬件结合实现的。本文中搭建的PTP服务是基于软件PTPd。如果没有特殊的硬件的话,这算是一种非常方便的方法了。

如果遇到任何问题,首先一定要看看help,使用-H选项的话还能看到非常详细的配置(虽然大多我可看不懂,不过不能不看,理解的越多,遇到的问题就会越少)。
如果log里面的信息看不懂,可以把代码下下来,一个grep搞定。

经测试,在我的机器上使用PTPD软件搭建的服务,时钟偏移的平均值能够达到5us左右。这个粒度基本能满足我们的需求了。

参考链接


Linux中的时钟准确度

本文来自戴尔软件开发高级工程师Stuart Hayes

一个关于计时的问题最近引起了我的关注。 有用户在 Dell 服务器上运行 Linux,并且发现时钟时间(Linux 所报告的)每天误差五秒以上,偏差比较明显。

我们首先想到的也许是运行 NTP,定期与真实世界同步操作系统的时钟。

但是这样的误差最初是如何产生的?

在Linux运行时,Linux 系统未使用实时时钟(real time clock - RTC) 硬件来计时。 Linux 通常在启动时从RTC 读取时间,然后从该点开始,Linux 使用另一个时钟来源(系统中的另一个计时器/计数器)来计时。

自第 2.6.18 版起,Linux 的内核就使用 CPU 时间戳计数器 (TSC) 作为首选的时钟来源(假设 TSC 以恒定频率运行,以新款的 Intel 服务器 CPU为例)。 但是,尽管读取速度很快且解析度很高,TSC 却不是一个已知的频率。 当内核使启动时,它需要使用频率已知的另一个计时器,对其进行校准。 这样的校准并非天衣无缝(即使用于校准的计时器也是如此),因此把 TSC 作为时钟来源会造成时间误差。

如果减少时间误差对您非常重要,而非若干微秒的调度延迟,则最好使用频率已知的计时器,如大多数 x86 服务器上提供的 HPET(高精度事件计时器)。 借助新内核上的参数"clocksource=hpet"可实现这一目标。 HPET 计时器以已知、固定的频率运行,Linux 内核可直接从计时器读取时间。

话说回来,尽管 HPET 的精度高于 TSC,运行 NTP 以在 Linux 中实现长期的时钟精度始终是很好的想法。
上述讨论仅适用于运行于裸机的 Linux。 在虚拟机中的问题略微复杂。

原文链接


Linux 中的时钟准确度