You've already forked ComputeLibrary
123 lines
5.1 KiB
C++
123 lines
5.1 KiB
C++
/*
|
|
* Copyright (c) 2025 Arm Limited.
|
|
*
|
|
* SPDX-License-Identifier: MIT
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to
|
|
* deal in the Software without restriction, including without limitation the
|
|
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
* sell copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
#include "arm_compute/core/Types.h"
|
|
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
|
|
#include "arm_compute/runtime/NEON/NEFunctions.h"
|
|
|
|
#include "utils/Utils.h"
|
|
|
|
using namespace arm_compute;
|
|
using namespace utils;
|
|
|
|
class NEConvolutionExample : public Example
|
|
{
|
|
public:
|
|
bool do_setup(int argc, char **argv) override
|
|
{
|
|
TensorShape input_shape{32, 256, 256};
|
|
TensorShape weights_shape{32, 4, 4, 4};
|
|
TensorShape output_shape{4, 127, 127};
|
|
TensorInfo input_info{input_shape, 1, DataType::F16, DataLayout::NHWC};
|
|
TensorInfo weights_info{weights_shape, 1, DataType::F16, DataLayout::NHWC};
|
|
TensorInfo output_info{output_shape, 1, DataType::F16, DataLayout::NHWC};
|
|
PadStrideInfo ps_info{1, 1, 0, 0, DimensionRoundingType::FLOOR};
|
|
|
|
if (argc == 11)
|
|
{
|
|
try
|
|
{
|
|
const size_t input_x = std::stoul(argv[1]);
|
|
const size_t input_y = std::stoul(argv[2]);
|
|
const size_t input_z = std::stoul(argv[3]);
|
|
const size_t kernel_size_x = std::stoul(argv[4]);
|
|
const size_t kernel_size_y = std::stoul(argv[5]);
|
|
const size_t output_channels = std::stoul(argv[6]);
|
|
const uint32_t stride_x = static_cast<uint32_t>(std::stoul(argv[7]));
|
|
const uint32_t stride_y = static_cast<uint32_t>(std::stoul(argv[8]));
|
|
const uint32_t pad_x = static_cast<uint32_t>(std::stoul(argv[9]));
|
|
const uint32_t pad_y = static_cast<uint32_t>(std::stoul(argv[10]));
|
|
|
|
input_shape = TensorShape{input_z, input_x, input_y};
|
|
input_info = TensorInfo{input_shape, 1, DataType::F16, DataLayout::NHWC};
|
|
weights_shape = TensorShape{input_z, kernel_size_x, kernel_size_y, output_channels};
|
|
weights_info = TensorInfo{weights_shape, 1, DataType::F16, DataLayout::NHWC};
|
|
ps_info = PadStrideInfo{stride_x, stride_y, pad_x, pad_y, DimensionRoundingType::FLOOR};
|
|
output_shape = arm_compute::misc::shape_calculator::compute_deep_convolution_shape(
|
|
input_info, weights_info, ps_info);
|
|
output_info = TensorInfo{output_shape, 1, DataType::F16, DataLayout::NHWC};
|
|
}
|
|
catch (const std::exception &e)
|
|
{
|
|
ARM_COMPUTE_ERROR(e.what());
|
|
return false;
|
|
}
|
|
}
|
|
else if (argc != 1)
|
|
{
|
|
ARM_COMPUTE_ERROR(
|
|
"Invalid number of arguments. Usage:\n"
|
|
"<input_width> <input_height> <input_channels> <kernel_size_x> <kernel_size_y> <output_channels> "
|
|
"<stride_x> <stride_y> <pad_x> <pad_y>\n");
|
|
return false;
|
|
}
|
|
|
|
input.allocator()->init(input_info);
|
|
weights.allocator()->init(weights_info);
|
|
output.allocator()->init(output_info);
|
|
|
|
auto status = NEConvolutionLayer::validate(input.info(), weights.info(), nullptr, output.info(), ps_info);
|
|
if (status.error_code() != ErrorCode::OK)
|
|
{
|
|
ARM_COMPUTE_ERROR(status.error_description().c_str());
|
|
return false;
|
|
}
|
|
|
|
conv.configure(&input, &weights, nullptr, &output, ps_info);
|
|
input.allocator()->allocate();
|
|
weights.allocator()->allocate();
|
|
output.allocator()->allocate();
|
|
|
|
return true;
|
|
}
|
|
|
|
void do_run() override
|
|
{
|
|
conv.run();
|
|
}
|
|
|
|
private:
|
|
NEConvolutionLayer conv{};
|
|
Tensor input{}, weights{}, output{};
|
|
};
|
|
|
|
/** Main program for convolution test
|
|
*
|
|
* @param[in] argc Number of arguments
|
|
* @param[in] argv Arguments (input_width, input_height, input_channels, kernel_size_x, kernel_size_y, output_channels, stride_x, stride_y pad_x, pad_y)
|
|
*/
|
|
int main(int argc, char **argv)
|
|
{
|
|
return utils::run_example<NEConvolutionExample>(argc, argv);
|
|
}
|