0
Files
ComputeLibrary/scripts/tf_frozen_model_extractor.py
2024-12-16 15:25:46 +00:00

86 lines
3.9 KiB
Python

#!/usr/bin/env python
#
# SPDX-FileCopyrightText: 2018, 2024 Arm Limited
#
# SPDX-License-Identifier: MIT
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
""" Extract trainable parameters from a frozen model and stores them in numpy arrays.
Usage:
python tf_frozen_model_extractor -m path_to_frozem_model -d path_to_store_the_parameters
Saves each variable to a {variable_name}.npy binary file.
Note that the script permutes the trainable parameters to NCHW format. This is a pretty manual step thus it's not thoroughly tested.
"""
import argparse
import os
import numpy as np
import tensorflow as tf
from tensorflow.python.platform import gfile
strings_to_remove=["read", "/:0"]
permutations = { 1 : [0], 2 : [1, 0], 3 : [2, 1, 0], 4 : [3, 2, 0, 1]}
if __name__ == "__main__":
# Parse arguments
parser = argparse.ArgumentParser('Extract TensorFlow net parameters')
parser.add_argument('-m', dest='modelFile', type=str, required=True, help='Path to TensorFlow frozen graph file (.pb)')
parser.add_argument('-d', dest='dumpPath', type=str, required=False, default='./', help='Path to store the resulting files.')
parser.add_argument('--nostore', dest='storeRes', action='store_false', help='Specify if files should not be stored. Used for debugging.')
parser.set_defaults(storeRes=True)
args = parser.parse_args()
# Create directory if not present
if not os.path.exists(args.dumpPath):
os.makedirs(args.dumpPath)
# Extract parameters
with tf.Graph().as_default() as graph:
with tf.Session() as sess:
print("Loading model.")
with gfile.FastGFile(args.modelFile, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
sess.graph.as_default()
tf.import_graph_def(graph_def, input_map=None, return_elements=None, name="", op_dict=None, producer_op_list=None)
for op in graph.get_operations():
for op_val in op.values():
varname = op_val.name
# Skip non-const values
if "read" in varname:
t = op_val.eval()
tT = t.transpose(permutations[len(t.shape)])
t = np.ascontiguousarray(tT)
for s in strings_to_remove:
varname = varname.replace(s, "")
if os.path.sep in varname:
varname = varname.replace(os.path.sep, '_')
print("Renaming variable {0} to {1}".format(op_val.name, varname))
# Store files
if args.storeRes:
print("Saving variable {0} with shape {1} ...".format(varname, t.shape))
np.save(os.path.join(args.dumpPath, varname), t)