Move PrivateKeyInfoCodec to rsa_private_key_nss.cc
It's only used by that one file. BUG=580653 Review URL: https://codereview.chromium.org/1829933002 Cr-Commit-Position: refs/heads/master@{#382979}
This commit is contained in:
@ -65,7 +65,6 @@ component("crypto") {
|
||||
"p224_spake.h",
|
||||
"random.cc",
|
||||
"random.h",
|
||||
"rsa_private_key.cc",
|
||||
"rsa_private_key.h",
|
||||
"rsa_private_key_nss.cc",
|
||||
"rsa_private_key_openssl.cc",
|
||||
|
@ -80,7 +80,6 @@
|
||||
'p224.h',
|
||||
'random.h',
|
||||
'random.cc',
|
||||
'rsa_private_key.cc',
|
||||
'rsa_private_key.h',
|
||||
'rsa_private_key_nss.cc',
|
||||
'rsa_private_key_openssl.cc',
|
||||
|
@ -1,389 +0,0 @@
|
||||
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file.
|
||||
|
||||
#include "crypto/rsa_private_key.h"
|
||||
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#include <algorithm>
|
||||
|
||||
#include "base/logging.h"
|
||||
#include "base/memory/scoped_ptr.h"
|
||||
#include "base/strings/string_util.h"
|
||||
|
||||
// This file manually encodes and decodes RSA private keys using PrivateKeyInfo
|
||||
// from PKCS #8 and RSAPrivateKey from PKCS #1. These structures are:
|
||||
//
|
||||
// PrivateKeyInfo ::= SEQUENCE {
|
||||
// version Version,
|
||||
// privateKeyAlgorithm PrivateKeyAlgorithmIdentifier,
|
||||
// privateKey PrivateKey,
|
||||
// attributes [0] IMPLICIT Attributes OPTIONAL
|
||||
// }
|
||||
//
|
||||
// RSAPrivateKey ::= SEQUENCE {
|
||||
// version Version,
|
||||
// modulus INTEGER,
|
||||
// publicExponent INTEGER,
|
||||
// privateExponent INTEGER,
|
||||
// prime1 INTEGER,
|
||||
// prime2 INTEGER,
|
||||
// exponent1 INTEGER,
|
||||
// exponent2 INTEGER,
|
||||
// coefficient INTEGER
|
||||
// }
|
||||
|
||||
namespace {
|
||||
// Helper for error handling during key import.
|
||||
#define READ_ASSERT(truth) \
|
||||
if (!(truth)) { \
|
||||
NOTREACHED(); \
|
||||
return false; \
|
||||
}
|
||||
} // namespace
|
||||
|
||||
namespace crypto {
|
||||
|
||||
const uint8_t PrivateKeyInfoCodec::kRsaAlgorithmIdentifier[] = {
|
||||
0x30, 0x0D, 0x06, 0x09, 0x2A, 0x86, 0x48, 0x86,
|
||||
0xF7, 0x0D, 0x01, 0x01, 0x01, 0x05, 0x00};
|
||||
|
||||
PrivateKeyInfoCodec::PrivateKeyInfoCodec(bool big_endian)
|
||||
: big_endian_(big_endian) {}
|
||||
|
||||
PrivateKeyInfoCodec::~PrivateKeyInfoCodec() {}
|
||||
|
||||
bool PrivateKeyInfoCodec::Export(std::vector<uint8_t>* output) {
|
||||
std::list<uint8_t> content;
|
||||
|
||||
// Version (always zero)
|
||||
uint8_t version = 0;
|
||||
|
||||
PrependInteger(coefficient_, &content);
|
||||
PrependInteger(exponent2_, &content);
|
||||
PrependInteger(exponent1_, &content);
|
||||
PrependInteger(prime2_, &content);
|
||||
PrependInteger(prime1_, &content);
|
||||
PrependInteger(private_exponent_, &content);
|
||||
PrependInteger(public_exponent_, &content);
|
||||
PrependInteger(modulus_, &content);
|
||||
PrependInteger(&version, 1, &content);
|
||||
PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content);
|
||||
PrependTypeHeaderAndLength(kOctetStringTag, content.size(), &content);
|
||||
|
||||
// RSA algorithm OID
|
||||
for (size_t i = sizeof(kRsaAlgorithmIdentifier); i > 0; --i)
|
||||
content.push_front(kRsaAlgorithmIdentifier[i - 1]);
|
||||
|
||||
PrependInteger(&version, 1, &content);
|
||||
PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content);
|
||||
|
||||
// Copy everying into the output.
|
||||
output->reserve(content.size());
|
||||
output->assign(content.begin(), content.end());
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool PrivateKeyInfoCodec::ExportPublicKeyInfo(std::vector<uint8_t>* output) {
|
||||
// Create a sequence with the modulus (n) and public exponent (e).
|
||||
std::vector<uint8_t> bit_string;
|
||||
if (!ExportPublicKey(&bit_string))
|
||||
return false;
|
||||
|
||||
// Add the sequence as the contents of a bit string.
|
||||
std::list<uint8_t> content;
|
||||
PrependBitString(&bit_string[0], static_cast<int>(bit_string.size()),
|
||||
&content);
|
||||
|
||||
// Add the RSA algorithm OID.
|
||||
for (size_t i = sizeof(kRsaAlgorithmIdentifier); i > 0; --i)
|
||||
content.push_front(kRsaAlgorithmIdentifier[i - 1]);
|
||||
|
||||
// Finally, wrap everything in a sequence.
|
||||
PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content);
|
||||
|
||||
// Copy everything into the output.
|
||||
output->reserve(content.size());
|
||||
output->assign(content.begin(), content.end());
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool PrivateKeyInfoCodec::ExportPublicKey(std::vector<uint8_t>* output) {
|
||||
// Create a sequence with the modulus (n) and public exponent (e).
|
||||
std::list<uint8_t> content;
|
||||
PrependInteger(&public_exponent_[0],
|
||||
static_cast<int>(public_exponent_.size()),
|
||||
&content);
|
||||
PrependInteger(&modulus_[0], static_cast<int>(modulus_.size()), &content);
|
||||
PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content);
|
||||
|
||||
// Copy everything into the output.
|
||||
output->reserve(content.size());
|
||||
output->assign(content.begin(), content.end());
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool PrivateKeyInfoCodec::Import(const std::vector<uint8_t>& input) {
|
||||
if (input.empty()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Parse the private key info up to the public key values, ignoring
|
||||
// the subsequent private key values.
|
||||
uint8_t* src = const_cast<uint8_t*>(&input.front());
|
||||
uint8_t* end = src + input.size();
|
||||
if (!ReadSequence(&src, end) ||
|
||||
!ReadVersion(&src, end) ||
|
||||
!ReadAlgorithmIdentifier(&src, end) ||
|
||||
!ReadTypeHeaderAndLength(&src, end, kOctetStringTag, NULL) ||
|
||||
!ReadSequence(&src, end) ||
|
||||
!ReadVersion(&src, end) ||
|
||||
!ReadInteger(&src, end, &modulus_))
|
||||
return false;
|
||||
|
||||
int mod_size = modulus_.size();
|
||||
READ_ASSERT(mod_size % 2 == 0);
|
||||
int primes_size = mod_size / 2;
|
||||
|
||||
if (!ReadIntegerWithExpectedSize(&src, end, 4, &public_exponent_) ||
|
||||
!ReadIntegerWithExpectedSize(&src, end, mod_size, &private_exponent_) ||
|
||||
!ReadIntegerWithExpectedSize(&src, end, primes_size, &prime1_) ||
|
||||
!ReadIntegerWithExpectedSize(&src, end, primes_size, &prime2_) ||
|
||||
!ReadIntegerWithExpectedSize(&src, end, primes_size, &exponent1_) ||
|
||||
!ReadIntegerWithExpectedSize(&src, end, primes_size, &exponent2_) ||
|
||||
!ReadIntegerWithExpectedSize(&src, end, primes_size, &coefficient_))
|
||||
return false;
|
||||
|
||||
READ_ASSERT(src == end);
|
||||
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void PrivateKeyInfoCodec::PrependInteger(const std::vector<uint8_t>& in,
|
||||
std::list<uint8_t>* out) {
|
||||
uint8_t* ptr = const_cast<uint8_t*>(&in.front());
|
||||
PrependIntegerImpl(ptr, in.size(), out, big_endian_);
|
||||
}
|
||||
|
||||
// Helper to prepend an ASN.1 integer.
|
||||
void PrivateKeyInfoCodec::PrependInteger(uint8_t* val,
|
||||
int num_bytes,
|
||||
std::list<uint8_t>* data) {
|
||||
PrependIntegerImpl(val, num_bytes, data, big_endian_);
|
||||
}
|
||||
|
||||
void PrivateKeyInfoCodec::PrependIntegerImpl(uint8_t* val,
|
||||
int num_bytes,
|
||||
std::list<uint8_t>* data,
|
||||
bool big_endian) {
|
||||
// Reverse input if little-endian.
|
||||
std::vector<uint8_t> tmp;
|
||||
if (!big_endian) {
|
||||
tmp.assign(val, val + num_bytes);
|
||||
std::reverse(tmp.begin(), tmp.end());
|
||||
val = &tmp.front();
|
||||
}
|
||||
|
||||
// ASN.1 integers are unpadded byte arrays, so skip any null padding bytes
|
||||
// from the most-significant end of the integer.
|
||||
int start = 0;
|
||||
while (start < (num_bytes - 1) && val[start] == 0x00) {
|
||||
start++;
|
||||
num_bytes--;
|
||||
}
|
||||
PrependBytes(val, start, num_bytes, data);
|
||||
|
||||
// ASN.1 integers are signed. To encode a positive integer whose sign bit
|
||||
// (the most significant bit) would otherwise be set and make the number
|
||||
// negative, ASN.1 requires a leading null byte to force the integer to be
|
||||
// positive.
|
||||
uint8_t front = data->front();
|
||||
if ((front & 0x80) != 0) {
|
||||
data->push_front(0x00);
|
||||
num_bytes++;
|
||||
}
|
||||
|
||||
PrependTypeHeaderAndLength(kIntegerTag, num_bytes, data);
|
||||
}
|
||||
|
||||
bool PrivateKeyInfoCodec::ReadInteger(uint8_t** pos,
|
||||
uint8_t* end,
|
||||
std::vector<uint8_t>* out) {
|
||||
return ReadIntegerImpl(pos, end, out, big_endian_);
|
||||
}
|
||||
|
||||
bool PrivateKeyInfoCodec::ReadIntegerWithExpectedSize(
|
||||
uint8_t** pos,
|
||||
uint8_t* end,
|
||||
size_t expected_size,
|
||||
std::vector<uint8_t>* out) {
|
||||
std::vector<uint8_t> temp;
|
||||
if (!ReadIntegerImpl(pos, end, &temp, true)) // Big-Endian
|
||||
return false;
|
||||
|
||||
int pad = expected_size - temp.size();
|
||||
int index = 0;
|
||||
if (out->size() == expected_size + 1) {
|
||||
READ_ASSERT(out->front() == 0x00);
|
||||
pad++;
|
||||
index++;
|
||||
} else {
|
||||
READ_ASSERT(out->size() <= expected_size);
|
||||
}
|
||||
|
||||
out->insert(out->end(), pad, 0x00);
|
||||
out->insert(out->end(), temp.begin(), temp.end());
|
||||
|
||||
// Reverse output if little-endian.
|
||||
if (!big_endian_)
|
||||
std::reverse(out->begin(), out->end());
|
||||
return true;
|
||||
}
|
||||
|
||||
bool PrivateKeyInfoCodec::ReadIntegerImpl(uint8_t** pos,
|
||||
uint8_t* end,
|
||||
std::vector<uint8_t>* out,
|
||||
bool big_endian) {
|
||||
uint32_t length = 0;
|
||||
if (!ReadTypeHeaderAndLength(pos, end, kIntegerTag, &length) || !length)
|
||||
return false;
|
||||
|
||||
// The first byte can be zero to force positiveness. We can ignore this.
|
||||
if (**pos == 0x00) {
|
||||
++(*pos);
|
||||
--length;
|
||||
}
|
||||
|
||||
if (length)
|
||||
out->insert(out->end(), *pos, (*pos) + length);
|
||||
|
||||
(*pos) += length;
|
||||
|
||||
// Reverse output if little-endian.
|
||||
if (!big_endian)
|
||||
std::reverse(out->begin(), out->end());
|
||||
return true;
|
||||
}
|
||||
|
||||
void PrivateKeyInfoCodec::PrependBytes(uint8_t* val,
|
||||
int start,
|
||||
int num_bytes,
|
||||
std::list<uint8_t>* data) {
|
||||
while (num_bytes > 0) {
|
||||
--num_bytes;
|
||||
data->push_front(val[start + num_bytes]);
|
||||
}
|
||||
}
|
||||
|
||||
void PrivateKeyInfoCodec::PrependLength(size_t size, std::list<uint8_t>* data) {
|
||||
// The high bit is used to indicate whether additional octets are needed to
|
||||
// represent the length.
|
||||
if (size < 0x80) {
|
||||
data->push_front(static_cast<uint8_t>(size));
|
||||
} else {
|
||||
uint8_t num_bytes = 0;
|
||||
while (size > 0) {
|
||||
data->push_front(static_cast<uint8_t>(size & 0xFF));
|
||||
size >>= 8;
|
||||
num_bytes++;
|
||||
}
|
||||
CHECK_LE(num_bytes, 4);
|
||||
data->push_front(0x80 | num_bytes);
|
||||
}
|
||||
}
|
||||
|
||||
void PrivateKeyInfoCodec::PrependTypeHeaderAndLength(
|
||||
uint8_t type,
|
||||
uint32_t length,
|
||||
std::list<uint8_t>* output) {
|
||||
PrependLength(length, output);
|
||||
output->push_front(type);
|
||||
}
|
||||
|
||||
void PrivateKeyInfoCodec::PrependBitString(uint8_t* val,
|
||||
int num_bytes,
|
||||
std::list<uint8_t>* output) {
|
||||
// Start with the data.
|
||||
PrependBytes(val, 0, num_bytes, output);
|
||||
// Zero unused bits.
|
||||
output->push_front(0);
|
||||
// Add the length.
|
||||
PrependLength(num_bytes + 1, output);
|
||||
// Finally, add the bit string tag.
|
||||
output->push_front((uint8_t)kBitStringTag);
|
||||
}
|
||||
|
||||
bool PrivateKeyInfoCodec::ReadLength(uint8_t** pos,
|
||||
uint8_t* end,
|
||||
uint32_t* result) {
|
||||
READ_ASSERT(*pos < end);
|
||||
int length = 0;
|
||||
|
||||
// If the MSB is not set, the length is just the byte itself.
|
||||
if (!(**pos & 0x80)) {
|
||||
length = **pos;
|
||||
(*pos)++;
|
||||
} else {
|
||||
// Otherwise, the lower 7 indicate the length of the length.
|
||||
int length_of_length = **pos & 0x7F;
|
||||
READ_ASSERT(length_of_length <= 4);
|
||||
(*pos)++;
|
||||
READ_ASSERT(*pos + length_of_length < end);
|
||||
|
||||
length = 0;
|
||||
for (int i = 0; i < length_of_length; ++i) {
|
||||
length <<= 8;
|
||||
length |= **pos;
|
||||
(*pos)++;
|
||||
}
|
||||
}
|
||||
|
||||
READ_ASSERT(*pos + length <= end);
|
||||
if (result) *result = length;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool PrivateKeyInfoCodec::ReadTypeHeaderAndLength(uint8_t** pos,
|
||||
uint8_t* end,
|
||||
uint8_t expected_tag,
|
||||
uint32_t* length) {
|
||||
READ_ASSERT(*pos < end);
|
||||
READ_ASSERT(**pos == expected_tag);
|
||||
(*pos)++;
|
||||
|
||||
return ReadLength(pos, end, length);
|
||||
}
|
||||
|
||||
bool PrivateKeyInfoCodec::ReadSequence(uint8_t** pos, uint8_t* end) {
|
||||
return ReadTypeHeaderAndLength(pos, end, kSequenceTag, NULL);
|
||||
}
|
||||
|
||||
bool PrivateKeyInfoCodec::ReadAlgorithmIdentifier(uint8_t** pos, uint8_t* end) {
|
||||
READ_ASSERT(*pos + sizeof(kRsaAlgorithmIdentifier) < end);
|
||||
READ_ASSERT(memcmp(*pos, kRsaAlgorithmIdentifier,
|
||||
sizeof(kRsaAlgorithmIdentifier)) == 0);
|
||||
(*pos) += sizeof(kRsaAlgorithmIdentifier);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool PrivateKeyInfoCodec::ReadVersion(uint8_t** pos, uint8_t* end) {
|
||||
uint32_t length = 0;
|
||||
if (!ReadTypeHeaderAndLength(pos, end, kIntegerTag, &length))
|
||||
return false;
|
||||
|
||||
// The version should be zero.
|
||||
for (uint32_t i = 0; i < length; ++i) {
|
||||
READ_ASSERT(**pos == 0x00);
|
||||
(*pos)++;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace crypto
|
@ -25,144 +25,8 @@ typedef struct SECKEYPrivateKeyStr SECKEYPrivateKey;
|
||||
typedef struct SECKEYPublicKeyStr SECKEYPublicKey;
|
||||
#endif
|
||||
|
||||
|
||||
namespace crypto {
|
||||
|
||||
// Used internally by RSAPrivateKey for serializing and deserializing
|
||||
// PKCS #8 PrivateKeyInfo and PublicKeyInfo.
|
||||
class PrivateKeyInfoCodec {
|
||||
public:
|
||||
// ASN.1 encoding of the AlgorithmIdentifier from PKCS #8.
|
||||
static const uint8_t kRsaAlgorithmIdentifier[];
|
||||
|
||||
// ASN.1 tags for some types we use.
|
||||
static const uint8_t kBitStringTag = 0x03;
|
||||
static const uint8_t kIntegerTag = 0x02;
|
||||
static const uint8_t kNullTag = 0x05;
|
||||
static const uint8_t kOctetStringTag = 0x04;
|
||||
static const uint8_t kSequenceTag = 0x30;
|
||||
|
||||
// |big_endian| here specifies the byte-significance of the integer components
|
||||
// that will be parsed & serialized (modulus(), etc...) during Import(),
|
||||
// Export() and ExportPublicKeyInfo() -- not the ASN.1 DER encoding of the
|
||||
// PrivateKeyInfo/PublicKeyInfo (which is always big-endian).
|
||||
explicit PrivateKeyInfoCodec(bool big_endian);
|
||||
|
||||
~PrivateKeyInfoCodec();
|
||||
|
||||
// Exports the contents of the integer components to the ASN.1 DER encoding
|
||||
// of the PrivateKeyInfo structure to |output|.
|
||||
bool Export(std::vector<uint8_t>* output);
|
||||
|
||||
// Exports the contents of the integer components to the ASN.1 DER encoding
|
||||
// of the PublicKeyInfo structure to |output|.
|
||||
bool ExportPublicKeyInfo(std::vector<uint8_t>* output);
|
||||
|
||||
// Exports the contents of the integer components to the ASN.1 DER encoding
|
||||
// of the RSAPublicKey structure to |output|.
|
||||
bool ExportPublicKey(std::vector<uint8_t>* output);
|
||||
|
||||
// Parses the ASN.1 DER encoding of the PrivateKeyInfo structure in |input|
|
||||
// and populates the integer components with |big_endian_| byte-significance.
|
||||
// IMPORTANT NOTE: This is currently *not* security-approved for importing
|
||||
// keys from unstrusted sources.
|
||||
bool Import(const std::vector<uint8_t>& input);
|
||||
|
||||
// Accessors to the contents of the integer components of the PrivateKeyInfo
|
||||
// structure.
|
||||
std::vector<uint8_t>* modulus() { return &modulus_; }
|
||||
std::vector<uint8_t>* public_exponent() { return &public_exponent_; }
|
||||
std::vector<uint8_t>* private_exponent() { return &private_exponent_; }
|
||||
std::vector<uint8_t>* prime1() { return &prime1_; }
|
||||
std::vector<uint8_t>* prime2() { return &prime2_; }
|
||||
std::vector<uint8_t>* exponent1() { return &exponent1_; }
|
||||
std::vector<uint8_t>* exponent2() { return &exponent2_; }
|
||||
std::vector<uint8_t>* coefficient() { return &coefficient_; }
|
||||
|
||||
private:
|
||||
// Utility wrappers for PrependIntegerImpl that use the class's |big_endian_|
|
||||
// value.
|
||||
void PrependInteger(const std::vector<uint8_t>& in, std::list<uint8_t>* out);
|
||||
void PrependInteger(uint8_t* val, int num_bytes, std::list<uint8_t>* data);
|
||||
|
||||
// Prepends the integer stored in |val| - |val + num_bytes| with |big_endian|
|
||||
// byte-significance into |data| as an ASN.1 integer.
|
||||
void PrependIntegerImpl(uint8_t* val,
|
||||
int num_bytes,
|
||||
std::list<uint8_t>* data,
|
||||
bool big_endian);
|
||||
|
||||
// Utility wrappers for ReadIntegerImpl that use the class's |big_endian_|
|
||||
// value.
|
||||
bool ReadInteger(uint8_t** pos, uint8_t* end, std::vector<uint8_t>* out);
|
||||
bool ReadIntegerWithExpectedSize(uint8_t** pos,
|
||||
uint8_t* end,
|
||||
size_t expected_size,
|
||||
std::vector<uint8_t>* out);
|
||||
|
||||
// Reads an ASN.1 integer from |pos|, and stores the result into |out| with
|
||||
// |big_endian| byte-significance.
|
||||
bool ReadIntegerImpl(uint8_t** pos,
|
||||
uint8_t* end,
|
||||
std::vector<uint8_t>* out,
|
||||
bool big_endian);
|
||||
|
||||
// Prepends the integer stored in |val|, starting a index |start|, for
|
||||
// |num_bytes| bytes onto |data|.
|
||||
void PrependBytes(uint8_t* val,
|
||||
int start,
|
||||
int num_bytes,
|
||||
std::list<uint8_t>* data);
|
||||
|
||||
// Helper to prepend an ASN.1 length field.
|
||||
void PrependLength(size_t size, std::list<uint8_t>* data);
|
||||
|
||||
// Helper to prepend an ASN.1 type header.
|
||||
void PrependTypeHeaderAndLength(uint8_t type,
|
||||
uint32_t length,
|
||||
std::list<uint8_t>* output);
|
||||
|
||||
// Helper to prepend an ASN.1 bit string
|
||||
void PrependBitString(uint8_t* val,
|
||||
int num_bytes,
|
||||
std::list<uint8_t>* output);
|
||||
|
||||
// Read an ASN.1 length field. This also checks that the length does not
|
||||
// extend beyond |end|.
|
||||
bool ReadLength(uint8_t** pos, uint8_t* end, uint32_t* result);
|
||||
|
||||
// Read an ASN.1 type header and its length.
|
||||
bool ReadTypeHeaderAndLength(uint8_t** pos,
|
||||
uint8_t* end,
|
||||
uint8_t expected_tag,
|
||||
uint32_t* length);
|
||||
|
||||
// Read an ASN.1 sequence declaration. This consumes the type header and
|
||||
// length field, but not the contents of the sequence.
|
||||
bool ReadSequence(uint8_t** pos, uint8_t* end);
|
||||
|
||||
// Read the RSA AlgorithmIdentifier.
|
||||
bool ReadAlgorithmIdentifier(uint8_t** pos, uint8_t* end);
|
||||
|
||||
// Read one of the two version fields in PrivateKeyInfo.
|
||||
bool ReadVersion(uint8_t** pos, uint8_t* end);
|
||||
|
||||
// The byte-significance of the stored components (modulus, etc..).
|
||||
bool big_endian_;
|
||||
|
||||
// Component integers of the PrivateKeyInfo
|
||||
std::vector<uint8_t> modulus_;
|
||||
std::vector<uint8_t> public_exponent_;
|
||||
std::vector<uint8_t> private_exponent_;
|
||||
std::vector<uint8_t> prime1_;
|
||||
std::vector<uint8_t> prime2_;
|
||||
std::vector<uint8_t> exponent1_;
|
||||
std::vector<uint8_t> exponent2_;
|
||||
std::vector<uint8_t> coefficient_;
|
||||
|
||||
DISALLOW_COPY_AND_ASSIGN(PrivateKeyInfoCodec);
|
||||
};
|
||||
|
||||
// Encapsulates an RSA private key. Can be used to generate new keys, export
|
||||
// keys to other formats, or to extract a public key.
|
||||
// TODO(hclam): This class should be ref-counted so it can be reused easily.
|
||||
|
@ -19,6 +19,13 @@
|
||||
#include "crypto/nss_util.h"
|
||||
#include "crypto/scoped_nss_types.h"
|
||||
|
||||
// Helper for error handling during key import.
|
||||
#define READ_ASSERT(truth) \
|
||||
if (!(truth)) { \
|
||||
NOTREACHED(); \
|
||||
return false; \
|
||||
}
|
||||
|
||||
// TODO(rafaelw): Consider using NSS's ASN.1 encoder.
|
||||
namespace {
|
||||
|
||||
@ -38,6 +45,480 @@ static bool ReadAttribute(SECKEYPrivateKey* key,
|
||||
return true;
|
||||
}
|
||||
|
||||
// Used internally by RSAPrivateKey for serializing and deserializing
|
||||
// PKCS #8 PrivateKeyInfo and PublicKeyInfo.
|
||||
class PrivateKeyInfoCodec {
|
||||
public:
|
||||
// ASN.1 encoding of the AlgorithmIdentifier from PKCS #8.
|
||||
static const uint8_t kRsaAlgorithmIdentifier[];
|
||||
|
||||
// ASN.1 tags for some types we use.
|
||||
static const uint8_t kBitStringTag = 0x03;
|
||||
static const uint8_t kIntegerTag = 0x02;
|
||||
static const uint8_t kOctetStringTag = 0x04;
|
||||
static const uint8_t kSequenceTag = 0x30;
|
||||
|
||||
// |big_endian| here specifies the byte-significance of the integer components
|
||||
// that will be parsed & serialized (modulus(), etc...) during Import(),
|
||||
// Export() and ExportPublicKeyInfo() -- not the ASN.1 DER encoding of the
|
||||
// PrivateKeyInfo/PublicKeyInfo (which is always big-endian).
|
||||
explicit PrivateKeyInfoCodec(bool big_endian);
|
||||
|
||||
~PrivateKeyInfoCodec();
|
||||
|
||||
// Exports the contents of the integer components to the ASN.1 DER encoding
|
||||
// of the PrivateKeyInfo structure to |output|.
|
||||
bool Export(std::vector<uint8_t>* output);
|
||||
|
||||
// Exports the contents of the integer components to the ASN.1 DER encoding
|
||||
// of the PublicKeyInfo structure to |output|.
|
||||
bool ExportPublicKeyInfo(std::vector<uint8_t>* output);
|
||||
|
||||
// Exports the contents of the integer components to the ASN.1 DER encoding
|
||||
// of the RSAPublicKey structure to |output|.
|
||||
bool ExportPublicKey(std::vector<uint8_t>* output);
|
||||
|
||||
// Parses the ASN.1 DER encoding of the PrivateKeyInfo structure in |input|
|
||||
// and populates the integer components with |big_endian_| byte-significance.
|
||||
// IMPORTANT NOTE: This is currently *not* security-approved for importing
|
||||
// keys from unstrusted sources.
|
||||
bool Import(const std::vector<uint8_t>& input);
|
||||
|
||||
// Accessors to the contents of the integer components of the PrivateKeyInfo
|
||||
// structure.
|
||||
std::vector<uint8_t>* modulus() { return &modulus_; }
|
||||
std::vector<uint8_t>* public_exponent() { return &public_exponent_; }
|
||||
std::vector<uint8_t>* private_exponent() { return &private_exponent_; }
|
||||
std::vector<uint8_t>* prime1() { return &prime1_; }
|
||||
std::vector<uint8_t>* prime2() { return &prime2_; }
|
||||
std::vector<uint8_t>* exponent1() { return &exponent1_; }
|
||||
std::vector<uint8_t>* exponent2() { return &exponent2_; }
|
||||
std::vector<uint8_t>* coefficient() { return &coefficient_; }
|
||||
|
||||
private:
|
||||
// Utility wrappers for PrependIntegerImpl that use the class's |big_endian_|
|
||||
// value.
|
||||
void PrependInteger(const std::vector<uint8_t>& in, std::list<uint8_t>* out);
|
||||
void PrependInteger(uint8_t* val, int num_bytes, std::list<uint8_t>* data);
|
||||
|
||||
// Prepends the integer stored in |val| - |val + num_bytes| with |big_endian|
|
||||
// byte-significance into |data| as an ASN.1 integer.
|
||||
void PrependIntegerImpl(uint8_t* val,
|
||||
int num_bytes,
|
||||
std::list<uint8_t>* data,
|
||||
bool big_endian);
|
||||
|
||||
// Utility wrappers for ReadIntegerImpl that use the class's |big_endian_|
|
||||
// value.
|
||||
bool ReadInteger(uint8_t** pos, uint8_t* end, std::vector<uint8_t>* out);
|
||||
bool ReadIntegerWithExpectedSize(uint8_t** pos,
|
||||
uint8_t* end,
|
||||
size_t expected_size,
|
||||
std::vector<uint8_t>* out);
|
||||
|
||||
// Reads an ASN.1 integer from |pos|, and stores the result into |out| with
|
||||
// |big_endian| byte-significance.
|
||||
bool ReadIntegerImpl(uint8_t** pos,
|
||||
uint8_t* end,
|
||||
std::vector<uint8_t>* out,
|
||||
bool big_endian);
|
||||
|
||||
// Prepends the integer stored in |val|, starting a index |start|, for
|
||||
// |num_bytes| bytes onto |data|.
|
||||
void PrependBytes(uint8_t* val,
|
||||
int start,
|
||||
int num_bytes,
|
||||
std::list<uint8_t>* data);
|
||||
|
||||
// Helper to prepend an ASN.1 length field.
|
||||
void PrependLength(size_t size, std::list<uint8_t>* data);
|
||||
|
||||
// Helper to prepend an ASN.1 type header.
|
||||
void PrependTypeHeaderAndLength(uint8_t type,
|
||||
uint32_t length,
|
||||
std::list<uint8_t>* output);
|
||||
|
||||
// Helper to prepend an ASN.1 bit string
|
||||
void PrependBitString(uint8_t* val,
|
||||
int num_bytes,
|
||||
std::list<uint8_t>* output);
|
||||
|
||||
// Read an ASN.1 length field. This also checks that the length does not
|
||||
// extend beyond |end|.
|
||||
bool ReadLength(uint8_t** pos, uint8_t* end, uint32_t* result);
|
||||
|
||||
// Read an ASN.1 type header and its length.
|
||||
bool ReadTypeHeaderAndLength(uint8_t** pos,
|
||||
uint8_t* end,
|
||||
uint8_t expected_tag,
|
||||
uint32_t* length);
|
||||
|
||||
// Read an ASN.1 sequence declaration. This consumes the type header and
|
||||
// length field, but not the contents of the sequence.
|
||||
bool ReadSequence(uint8_t** pos, uint8_t* end);
|
||||
|
||||
// Read the RSA AlgorithmIdentifier.
|
||||
bool ReadAlgorithmIdentifier(uint8_t** pos, uint8_t* end);
|
||||
|
||||
// Read one of the two version fields in PrivateKeyInfo.
|
||||
bool ReadVersion(uint8_t** pos, uint8_t* end);
|
||||
|
||||
// The byte-significance of the stored components (modulus, etc..).
|
||||
bool big_endian_;
|
||||
|
||||
// Component integers of the PrivateKeyInfo
|
||||
std::vector<uint8_t> modulus_;
|
||||
std::vector<uint8_t> public_exponent_;
|
||||
std::vector<uint8_t> private_exponent_;
|
||||
std::vector<uint8_t> prime1_;
|
||||
std::vector<uint8_t> prime2_;
|
||||
std::vector<uint8_t> exponent1_;
|
||||
std::vector<uint8_t> exponent2_;
|
||||
std::vector<uint8_t> coefficient_;
|
||||
|
||||
DISALLOW_COPY_AND_ASSIGN(PrivateKeyInfoCodec);
|
||||
};
|
||||
|
||||
const uint8_t PrivateKeyInfoCodec::kRsaAlgorithmIdentifier[] = {
|
||||
0x30, 0x0D, 0x06, 0x09, 0x2A, 0x86, 0x48, 0x86,
|
||||
0xF7, 0x0D, 0x01, 0x01, 0x01, 0x05, 0x00};
|
||||
|
||||
PrivateKeyInfoCodec::PrivateKeyInfoCodec(bool big_endian)
|
||||
: big_endian_(big_endian) {}
|
||||
|
||||
PrivateKeyInfoCodec::~PrivateKeyInfoCodec() {}
|
||||
|
||||
bool PrivateKeyInfoCodec::Export(std::vector<uint8_t>* output) {
|
||||
std::list<uint8_t> content;
|
||||
|
||||
// Version (always zero)
|
||||
uint8_t version = 0;
|
||||
|
||||
PrependInteger(coefficient_, &content);
|
||||
PrependInteger(exponent2_, &content);
|
||||
PrependInteger(exponent1_, &content);
|
||||
PrependInteger(prime2_, &content);
|
||||
PrependInteger(prime1_, &content);
|
||||
PrependInteger(private_exponent_, &content);
|
||||
PrependInteger(public_exponent_, &content);
|
||||
PrependInteger(modulus_, &content);
|
||||
PrependInteger(&version, 1, &content);
|
||||
PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content);
|
||||
PrependTypeHeaderAndLength(kOctetStringTag, content.size(), &content);
|
||||
|
||||
// RSA algorithm OID
|
||||
for (size_t i = sizeof(kRsaAlgorithmIdentifier); i > 0; --i)
|
||||
content.push_front(kRsaAlgorithmIdentifier[i - 1]);
|
||||
|
||||
PrependInteger(&version, 1, &content);
|
||||
PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content);
|
||||
|
||||
// Copy everying into the output.
|
||||
output->reserve(content.size());
|
||||
output->assign(content.begin(), content.end());
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool PrivateKeyInfoCodec::ExportPublicKeyInfo(std::vector<uint8_t>* output) {
|
||||
// Create a sequence with the modulus (n) and public exponent (e).
|
||||
std::vector<uint8_t> bit_string;
|
||||
if (!ExportPublicKey(&bit_string))
|
||||
return false;
|
||||
|
||||
// Add the sequence as the contents of a bit string.
|
||||
std::list<uint8_t> content;
|
||||
PrependBitString(&bit_string[0], static_cast<int>(bit_string.size()),
|
||||
&content);
|
||||
|
||||
// Add the RSA algorithm OID.
|
||||
for (size_t i = sizeof(kRsaAlgorithmIdentifier); i > 0; --i)
|
||||
content.push_front(kRsaAlgorithmIdentifier[i - 1]);
|
||||
|
||||
// Finally, wrap everything in a sequence.
|
||||
PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content);
|
||||
|
||||
// Copy everything into the output.
|
||||
output->reserve(content.size());
|
||||
output->assign(content.begin(), content.end());
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool PrivateKeyInfoCodec::ExportPublicKey(std::vector<uint8_t>* output) {
|
||||
// Create a sequence with the modulus (n) and public exponent (e).
|
||||
std::list<uint8_t> content;
|
||||
PrependInteger(&public_exponent_[0],
|
||||
static_cast<int>(public_exponent_.size()),
|
||||
&content);
|
||||
PrependInteger(&modulus_[0], static_cast<int>(modulus_.size()), &content);
|
||||
PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content);
|
||||
|
||||
// Copy everything into the output.
|
||||
output->reserve(content.size());
|
||||
output->assign(content.begin(), content.end());
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool PrivateKeyInfoCodec::Import(const std::vector<uint8_t>& input) {
|
||||
if (input.empty()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Parse the private key info up to the public key values, ignoring
|
||||
// the subsequent private key values.
|
||||
uint8_t* src = const_cast<uint8_t*>(&input.front());
|
||||
uint8_t* end = src + input.size();
|
||||
if (!ReadSequence(&src, end) ||
|
||||
!ReadVersion(&src, end) ||
|
||||
!ReadAlgorithmIdentifier(&src, end) ||
|
||||
!ReadTypeHeaderAndLength(&src, end, kOctetStringTag, NULL) ||
|
||||
!ReadSequence(&src, end) ||
|
||||
!ReadVersion(&src, end) ||
|
||||
!ReadInteger(&src, end, &modulus_))
|
||||
return false;
|
||||
|
||||
int mod_size = modulus_.size();
|
||||
READ_ASSERT(mod_size % 2 == 0);
|
||||
int primes_size = mod_size / 2;
|
||||
|
||||
if (!ReadIntegerWithExpectedSize(&src, end, 4, &public_exponent_) ||
|
||||
!ReadIntegerWithExpectedSize(&src, end, mod_size, &private_exponent_) ||
|
||||
!ReadIntegerWithExpectedSize(&src, end, primes_size, &prime1_) ||
|
||||
!ReadIntegerWithExpectedSize(&src, end, primes_size, &prime2_) ||
|
||||
!ReadIntegerWithExpectedSize(&src, end, primes_size, &exponent1_) ||
|
||||
!ReadIntegerWithExpectedSize(&src, end, primes_size, &exponent2_) ||
|
||||
!ReadIntegerWithExpectedSize(&src, end, primes_size, &coefficient_))
|
||||
return false;
|
||||
|
||||
READ_ASSERT(src == end);
|
||||
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void PrivateKeyInfoCodec::PrependInteger(const std::vector<uint8_t>& in,
|
||||
std::list<uint8_t>* out) {
|
||||
uint8_t* ptr = const_cast<uint8_t*>(&in.front());
|
||||
PrependIntegerImpl(ptr, in.size(), out, big_endian_);
|
||||
}
|
||||
|
||||
// Helper to prepend an ASN.1 integer.
|
||||
void PrivateKeyInfoCodec::PrependInteger(uint8_t* val,
|
||||
int num_bytes,
|
||||
std::list<uint8_t>* data) {
|
||||
PrependIntegerImpl(val, num_bytes, data, big_endian_);
|
||||
}
|
||||
|
||||
void PrivateKeyInfoCodec::PrependIntegerImpl(uint8_t* val,
|
||||
int num_bytes,
|
||||
std::list<uint8_t>* data,
|
||||
bool big_endian) {
|
||||
// Reverse input if little-endian.
|
||||
std::vector<uint8_t> tmp;
|
||||
if (!big_endian) {
|
||||
tmp.assign(val, val + num_bytes);
|
||||
std::reverse(tmp.begin(), tmp.end());
|
||||
val = &tmp.front();
|
||||
}
|
||||
|
||||
// ASN.1 integers are unpadded byte arrays, so skip any null padding bytes
|
||||
// from the most-significant end of the integer.
|
||||
int start = 0;
|
||||
while (start < (num_bytes - 1) && val[start] == 0x00) {
|
||||
start++;
|
||||
num_bytes--;
|
||||
}
|
||||
PrependBytes(val, start, num_bytes, data);
|
||||
|
||||
// ASN.1 integers are signed. To encode a positive integer whose sign bit
|
||||
// (the most significant bit) would otherwise be set and make the number
|
||||
// negative, ASN.1 requires a leading null byte to force the integer to be
|
||||
// positive.
|
||||
uint8_t front = data->front();
|
||||
if ((front & 0x80) != 0) {
|
||||
data->push_front(0x00);
|
||||
num_bytes++;
|
||||
}
|
||||
|
||||
PrependTypeHeaderAndLength(kIntegerTag, num_bytes, data);
|
||||
}
|
||||
|
||||
bool PrivateKeyInfoCodec::ReadInteger(uint8_t** pos,
|
||||
uint8_t* end,
|
||||
std::vector<uint8_t>* out) {
|
||||
return ReadIntegerImpl(pos, end, out, big_endian_);
|
||||
}
|
||||
|
||||
bool PrivateKeyInfoCodec::ReadIntegerWithExpectedSize(
|
||||
uint8_t** pos,
|
||||
uint8_t* end,
|
||||
size_t expected_size,
|
||||
std::vector<uint8_t>* out) {
|
||||
std::vector<uint8_t> temp;
|
||||
if (!ReadIntegerImpl(pos, end, &temp, true)) // Big-Endian
|
||||
return false;
|
||||
|
||||
int pad = expected_size - temp.size();
|
||||
int index = 0;
|
||||
if (out->size() == expected_size + 1) {
|
||||
READ_ASSERT(out->front() == 0x00);
|
||||
pad++;
|
||||
index++;
|
||||
} else {
|
||||
READ_ASSERT(out->size() <= expected_size);
|
||||
}
|
||||
|
||||
out->insert(out->end(), pad, 0x00);
|
||||
out->insert(out->end(), temp.begin(), temp.end());
|
||||
|
||||
// Reverse output if little-endian.
|
||||
if (!big_endian_)
|
||||
std::reverse(out->begin(), out->end());
|
||||
return true;
|
||||
}
|
||||
|
||||
bool PrivateKeyInfoCodec::ReadIntegerImpl(uint8_t** pos,
|
||||
uint8_t* end,
|
||||
std::vector<uint8_t>* out,
|
||||
bool big_endian) {
|
||||
uint32_t length = 0;
|
||||
if (!ReadTypeHeaderAndLength(pos, end, kIntegerTag, &length) || !length)
|
||||
return false;
|
||||
|
||||
// The first byte can be zero to force positiveness. We can ignore this.
|
||||
if (**pos == 0x00) {
|
||||
++(*pos);
|
||||
--length;
|
||||
}
|
||||
|
||||
if (length)
|
||||
out->insert(out->end(), *pos, (*pos) + length);
|
||||
|
||||
(*pos) += length;
|
||||
|
||||
// Reverse output if little-endian.
|
||||
if (!big_endian)
|
||||
std::reverse(out->begin(), out->end());
|
||||
return true;
|
||||
}
|
||||
|
||||
void PrivateKeyInfoCodec::PrependBytes(uint8_t* val,
|
||||
int start,
|
||||
int num_bytes,
|
||||
std::list<uint8_t>* data) {
|
||||
while (num_bytes > 0) {
|
||||
--num_bytes;
|
||||
data->push_front(val[start + num_bytes]);
|
||||
}
|
||||
}
|
||||
|
||||
void PrivateKeyInfoCodec::PrependLength(size_t size, std::list<uint8_t>* data) {
|
||||
// The high bit is used to indicate whether additional octets are needed to
|
||||
// represent the length.
|
||||
if (size < 0x80) {
|
||||
data->push_front(static_cast<uint8_t>(size));
|
||||
} else {
|
||||
uint8_t num_bytes = 0;
|
||||
while (size > 0) {
|
||||
data->push_front(static_cast<uint8_t>(size & 0xFF));
|
||||
size >>= 8;
|
||||
num_bytes++;
|
||||
}
|
||||
CHECK_LE(num_bytes, 4);
|
||||
data->push_front(0x80 | num_bytes);
|
||||
}
|
||||
}
|
||||
|
||||
void PrivateKeyInfoCodec::PrependTypeHeaderAndLength(
|
||||
uint8_t type,
|
||||
uint32_t length,
|
||||
std::list<uint8_t>* output) {
|
||||
PrependLength(length, output);
|
||||
output->push_front(type);
|
||||
}
|
||||
|
||||
void PrivateKeyInfoCodec::PrependBitString(uint8_t* val,
|
||||
int num_bytes,
|
||||
std::list<uint8_t>* output) {
|
||||
// Start with the data.
|
||||
PrependBytes(val, 0, num_bytes, output);
|
||||
// Zero unused bits.
|
||||
output->push_front(0);
|
||||
// Add the length.
|
||||
PrependLength(num_bytes + 1, output);
|
||||
// Finally, add the bit string tag.
|
||||
output->push_front((uint8_t)kBitStringTag);
|
||||
}
|
||||
|
||||
bool PrivateKeyInfoCodec::ReadLength(uint8_t** pos,
|
||||
uint8_t* end,
|
||||
uint32_t* result) {
|
||||
READ_ASSERT(*pos < end);
|
||||
int length = 0;
|
||||
|
||||
// If the MSB is not set, the length is just the byte itself.
|
||||
if (!(**pos & 0x80)) {
|
||||
length = **pos;
|
||||
(*pos)++;
|
||||
} else {
|
||||
// Otherwise, the lower 7 indicate the length of the length.
|
||||
int length_of_length = **pos & 0x7F;
|
||||
READ_ASSERT(length_of_length <= 4);
|
||||
(*pos)++;
|
||||
READ_ASSERT(*pos + length_of_length < end);
|
||||
|
||||
length = 0;
|
||||
for (int i = 0; i < length_of_length; ++i) {
|
||||
length <<= 8;
|
||||
length |= **pos;
|
||||
(*pos)++;
|
||||
}
|
||||
}
|
||||
|
||||
READ_ASSERT(*pos + length <= end);
|
||||
if (result) *result = length;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool PrivateKeyInfoCodec::ReadTypeHeaderAndLength(uint8_t** pos,
|
||||
uint8_t* end,
|
||||
uint8_t expected_tag,
|
||||
uint32_t* length) {
|
||||
READ_ASSERT(*pos < end);
|
||||
READ_ASSERT(**pos == expected_tag);
|
||||
(*pos)++;
|
||||
|
||||
return ReadLength(pos, end, length);
|
||||
}
|
||||
|
||||
bool PrivateKeyInfoCodec::ReadSequence(uint8_t** pos, uint8_t* end) {
|
||||
return ReadTypeHeaderAndLength(pos, end, kSequenceTag, NULL);
|
||||
}
|
||||
|
||||
bool PrivateKeyInfoCodec::ReadAlgorithmIdentifier(uint8_t** pos, uint8_t* end) {
|
||||
READ_ASSERT(*pos + sizeof(kRsaAlgorithmIdentifier) < end);
|
||||
READ_ASSERT(memcmp(*pos, kRsaAlgorithmIdentifier,
|
||||
sizeof(kRsaAlgorithmIdentifier)) == 0);
|
||||
(*pos) += sizeof(kRsaAlgorithmIdentifier);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool PrivateKeyInfoCodec::ReadVersion(uint8_t** pos, uint8_t* end) {
|
||||
uint32_t length = 0;
|
||||
if (!ReadTypeHeaderAndLength(pos, end, kIntegerTag, &length))
|
||||
return false;
|
||||
|
||||
// The version should be zero.
|
||||
for (uint32_t i = 0; i < length; ++i) {
|
||||
READ_ASSERT(**pos == 0x00);
|
||||
(*pos)++;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
namespace crypto {
|
||||
|
Reference in New Issue
Block a user