
Also, there's no point in using scoped_ptr for event_ anymore, so removed that. Should fix http://crbug.com/10503 "Crash in network layer" Review URL: http://codereview.chromium.org/87045 git-svn-id: svn://svn.chromium.org/chrome/trunk/src@14233 0039d316-1c4b-4281-b951-d872f2087c98
1459 lines
45 KiB
C++
1459 lines
45 KiB
C++
// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "base/logging.h"
|
|
#include "base/message_loop.h"
|
|
#include "base/platform_thread.h"
|
|
#include "base/ref_counted.h"
|
|
#include "base/thread.h"
|
|
#include "testing/gtest/include/gtest/gtest.h"
|
|
|
|
#if defined(OS_WIN)
|
|
#include "base/message_pump_win.h"
|
|
#include "base/scoped_handle.h"
|
|
#endif
|
|
#if defined(OS_POSIX)
|
|
#include "base/message_pump_libevent.h"
|
|
#endif
|
|
|
|
using base::Thread;
|
|
using base::Time;
|
|
using base::TimeDelta;
|
|
|
|
// TODO(darin): Platform-specific MessageLoop tests should be grouped together
|
|
// to avoid chopping this file up with so many #ifdefs.
|
|
|
|
namespace {
|
|
|
|
class MessageLoopTest : public testing::Test {};
|
|
|
|
class Foo : public base::RefCounted<Foo> {
|
|
public:
|
|
Foo() : test_count_(0) {
|
|
}
|
|
|
|
void Test0() {
|
|
++test_count_;
|
|
}
|
|
|
|
void Test1ConstRef(const std::string& a) {
|
|
++test_count_;
|
|
result_.append(a);
|
|
}
|
|
|
|
void Test1Ptr(std::string* a) {
|
|
++test_count_;
|
|
result_.append(*a);
|
|
}
|
|
|
|
void Test1Int(int a) {
|
|
test_count_ += a;
|
|
}
|
|
|
|
void Test2Ptr(std::string* a, std::string* b) {
|
|
++test_count_;
|
|
result_.append(*a);
|
|
result_.append(*b);
|
|
}
|
|
|
|
void Test2Mixed(const std::string& a, std::string* b) {
|
|
++test_count_;
|
|
result_.append(a);
|
|
result_.append(*b);
|
|
}
|
|
|
|
int test_count() const { return test_count_; }
|
|
const std::string& result() const { return result_; }
|
|
|
|
private:
|
|
int test_count_;
|
|
std::string result_;
|
|
};
|
|
|
|
class QuitMsgLoop : public base::RefCounted<QuitMsgLoop> {
|
|
public:
|
|
void QuitNow() {
|
|
MessageLoop::current()->Quit();
|
|
}
|
|
};
|
|
|
|
void RunTest_PostTask(MessageLoop::Type message_loop_type) {
|
|
MessageLoop loop(message_loop_type);
|
|
|
|
// Add tests to message loop
|
|
scoped_refptr<Foo> foo = new Foo();
|
|
std::string a("a"), b("b"), c("c"), d("d");
|
|
MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
|
|
foo.get(), &Foo::Test0));
|
|
MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
|
|
foo.get(), &Foo::Test1ConstRef, a));
|
|
MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
|
|
foo.get(), &Foo::Test1Ptr, &b));
|
|
MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
|
|
foo.get(), &Foo::Test1Int, 100));
|
|
MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
|
|
foo.get(), &Foo::Test2Ptr, &a, &c));
|
|
MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
|
|
foo.get(), &Foo::Test2Mixed, a, &d));
|
|
|
|
// After all tests, post a message that will shut down the message loop
|
|
scoped_refptr<QuitMsgLoop> quit = new QuitMsgLoop();
|
|
MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
|
|
quit.get(), &QuitMsgLoop::QuitNow));
|
|
|
|
// Now kick things off
|
|
MessageLoop::current()->Run();
|
|
|
|
EXPECT_EQ(foo->test_count(), 105);
|
|
EXPECT_EQ(foo->result(), "abacad");
|
|
}
|
|
|
|
void RunTest_PostTask_SEH(MessageLoop::Type message_loop_type) {
|
|
MessageLoop loop(message_loop_type);
|
|
|
|
// Add tests to message loop
|
|
scoped_refptr<Foo> foo = new Foo();
|
|
std::string a("a"), b("b"), c("c"), d("d");
|
|
MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
|
|
foo.get(), &Foo::Test0));
|
|
MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
|
|
foo.get(), &Foo::Test1ConstRef, a));
|
|
MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
|
|
foo.get(), &Foo::Test1Ptr, &b));
|
|
MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
|
|
foo.get(), &Foo::Test1Int, 100));
|
|
MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
|
|
foo.get(), &Foo::Test2Ptr, &a, &c));
|
|
MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
|
|
foo.get(), &Foo::Test2Mixed, a, &d));
|
|
|
|
// After all tests, post a message that will shut down the message loop
|
|
scoped_refptr<QuitMsgLoop> quit = new QuitMsgLoop();
|
|
MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod(
|
|
quit.get(), &QuitMsgLoop::QuitNow));
|
|
|
|
// Now kick things off with the SEH block active.
|
|
MessageLoop::current()->set_exception_restoration(true);
|
|
MessageLoop::current()->Run();
|
|
MessageLoop::current()->set_exception_restoration(false);
|
|
|
|
EXPECT_EQ(foo->test_count(), 105);
|
|
EXPECT_EQ(foo->result(), "abacad");
|
|
}
|
|
|
|
// This class runs slowly to simulate a large amount of work being done.
|
|
class SlowTask : public Task {
|
|
public:
|
|
SlowTask(int pause_ms, int* quit_counter)
|
|
: pause_ms_(pause_ms), quit_counter_(quit_counter) {
|
|
}
|
|
virtual void Run() {
|
|
PlatformThread::Sleep(pause_ms_);
|
|
if (--(*quit_counter_) == 0)
|
|
MessageLoop::current()->Quit();
|
|
}
|
|
private:
|
|
int pause_ms_;
|
|
int* quit_counter_;
|
|
};
|
|
|
|
// This class records the time when Run was called in a Time object, which is
|
|
// useful for building a variety of MessageLoop tests.
|
|
class RecordRunTimeTask : public SlowTask {
|
|
public:
|
|
RecordRunTimeTask(Time* run_time, int* quit_counter)
|
|
: SlowTask(10, quit_counter), run_time_(run_time) {
|
|
}
|
|
virtual void Run() {
|
|
*run_time_ = Time::Now();
|
|
// Cause our Run function to take some time to execute. As a result we can
|
|
// count on subsequent RecordRunTimeTask objects running at a future time,
|
|
// without worry about the resolution of our system clock being an issue.
|
|
SlowTask::Run();
|
|
}
|
|
private:
|
|
Time* run_time_;
|
|
};
|
|
|
|
void RunTest_PostDelayedTask_Basic(MessageLoop::Type message_loop_type) {
|
|
MessageLoop loop(message_loop_type);
|
|
|
|
// Test that PostDelayedTask results in a delayed task.
|
|
|
|
const int kDelayMS = 100;
|
|
|
|
int num_tasks = 1;
|
|
Time run_time;
|
|
|
|
loop.PostDelayedTask(
|
|
FROM_HERE, new RecordRunTimeTask(&run_time, &num_tasks), kDelayMS);
|
|
|
|
Time time_before_run = Time::Now();
|
|
loop.Run();
|
|
Time time_after_run = Time::Now();
|
|
|
|
EXPECT_EQ(0, num_tasks);
|
|
EXPECT_LT(kDelayMS, (time_after_run - time_before_run).InMilliseconds());
|
|
}
|
|
|
|
void RunTest_PostDelayedTask_InDelayOrder(MessageLoop::Type message_loop_type) {
|
|
MessageLoop loop(message_loop_type);
|
|
|
|
// Test that two tasks with different delays run in the right order.
|
|
|
|
int num_tasks = 2;
|
|
Time run_time1, run_time2;
|
|
|
|
loop.PostDelayedTask(
|
|
FROM_HERE, new RecordRunTimeTask(&run_time1, &num_tasks), 200);
|
|
// If we get a large pause in execution (due to a context switch) here, this
|
|
// test could fail.
|
|
loop.PostDelayedTask(
|
|
FROM_HERE, new RecordRunTimeTask(&run_time2, &num_tasks), 10);
|
|
|
|
loop.Run();
|
|
EXPECT_EQ(0, num_tasks);
|
|
|
|
EXPECT_TRUE(run_time2 < run_time1);
|
|
}
|
|
|
|
void RunTest_PostDelayedTask_InPostOrder(MessageLoop::Type message_loop_type) {
|
|
MessageLoop loop(message_loop_type);
|
|
|
|
// Test that two tasks with the same delay run in the order in which they
|
|
// were posted.
|
|
//
|
|
// NOTE: This is actually an approximate test since the API only takes a
|
|
// "delay" parameter, so we are not exactly simulating two tasks that get
|
|
// posted at the exact same time. It would be nice if the API allowed us to
|
|
// specify the desired run time.
|
|
|
|
const int kDelayMS = 100;
|
|
|
|
int num_tasks = 2;
|
|
Time run_time1, run_time2;
|
|
|
|
loop.PostDelayedTask(
|
|
FROM_HERE, new RecordRunTimeTask(&run_time1, &num_tasks), kDelayMS);
|
|
loop.PostDelayedTask(
|
|
FROM_HERE, new RecordRunTimeTask(&run_time2, &num_tasks), kDelayMS);
|
|
|
|
loop.Run();
|
|
EXPECT_EQ(0, num_tasks);
|
|
|
|
EXPECT_TRUE(run_time1 < run_time2);
|
|
}
|
|
|
|
void RunTest_PostDelayedTask_InPostOrder_2(
|
|
MessageLoop::Type message_loop_type) {
|
|
MessageLoop loop(message_loop_type);
|
|
|
|
// Test that a delayed task still runs after a normal tasks even if the
|
|
// normal tasks take a long time to run.
|
|
|
|
const int kPauseMS = 50;
|
|
|
|
int num_tasks = 2;
|
|
Time run_time;
|
|
|
|
loop.PostTask(
|
|
FROM_HERE, new SlowTask(kPauseMS, &num_tasks));
|
|
loop.PostDelayedTask(
|
|
FROM_HERE, new RecordRunTimeTask(&run_time, &num_tasks), 10);
|
|
|
|
Time time_before_run = Time::Now();
|
|
loop.Run();
|
|
Time time_after_run = Time::Now();
|
|
|
|
EXPECT_EQ(0, num_tasks);
|
|
|
|
EXPECT_LT(kPauseMS, (time_after_run - time_before_run).InMilliseconds());
|
|
}
|
|
|
|
void RunTest_PostDelayedTask_InPostOrder_3(
|
|
MessageLoop::Type message_loop_type) {
|
|
MessageLoop loop(message_loop_type);
|
|
|
|
// Test that a delayed task still runs after a pile of normal tasks. The key
|
|
// difference between this test and the previous one is that here we return
|
|
// the MessageLoop a lot so we give the MessageLoop plenty of opportunities
|
|
// to maybe run the delayed task. It should know not to do so until the
|
|
// delayed task's delay has passed.
|
|
|
|
int num_tasks = 11;
|
|
Time run_time1, run_time2;
|
|
|
|
// Clutter the ML with tasks.
|
|
for (int i = 1; i < num_tasks; ++i)
|
|
loop.PostTask(FROM_HERE, new RecordRunTimeTask(&run_time1, &num_tasks));
|
|
|
|
loop.PostDelayedTask(
|
|
FROM_HERE, new RecordRunTimeTask(&run_time2, &num_tasks), 1);
|
|
|
|
loop.Run();
|
|
EXPECT_EQ(0, num_tasks);
|
|
|
|
EXPECT_TRUE(run_time2 > run_time1);
|
|
}
|
|
|
|
void RunTest_PostDelayedTask_SharedTimer(MessageLoop::Type message_loop_type) {
|
|
MessageLoop loop(message_loop_type);
|
|
|
|
// Test that the interval of the timer, used to run the next delayed task, is
|
|
// set to a value corresponding to when the next delayed task should run.
|
|
|
|
// By setting num_tasks to 1, we ensure that the first task to run causes the
|
|
// run loop to exit.
|
|
int num_tasks = 1;
|
|
Time run_time1, run_time2;
|
|
|
|
loop.PostDelayedTask(
|
|
FROM_HERE, new RecordRunTimeTask(&run_time1, &num_tasks), 1000000);
|
|
loop.PostDelayedTask(
|
|
FROM_HERE, new RecordRunTimeTask(&run_time2, &num_tasks), 10);
|
|
|
|
Time start_time = Time::Now();
|
|
|
|
loop.Run();
|
|
EXPECT_EQ(0, num_tasks);
|
|
|
|
// Ensure that we ran in far less time than the slower timer.
|
|
TimeDelta total_time = Time::Now() - start_time;
|
|
EXPECT_GT(5000, total_time.InMilliseconds());
|
|
|
|
// In case both timers somehow run at nearly the same time, sleep a little
|
|
// and then run all pending to force them both to have run. This is just
|
|
// encouraging flakiness if there is any.
|
|
PlatformThread::Sleep(100);
|
|
loop.RunAllPending();
|
|
|
|
EXPECT_TRUE(run_time1.is_null());
|
|
EXPECT_FALSE(run_time2.is_null());
|
|
}
|
|
|
|
#if defined(OS_WIN)
|
|
|
|
class SubPumpTask : public Task {
|
|
public:
|
|
virtual void Run() {
|
|
MessageLoop::current()->SetNestableTasksAllowed(true);
|
|
MSG msg;
|
|
while (GetMessage(&msg, NULL, 0, 0)) {
|
|
TranslateMessage(&msg);
|
|
DispatchMessage(&msg);
|
|
}
|
|
MessageLoop::current()->Quit();
|
|
}
|
|
};
|
|
|
|
class SubPumpQuitTask : public Task {
|
|
public:
|
|
SubPumpQuitTask() {
|
|
}
|
|
virtual void Run() {
|
|
PostQuitMessage(0);
|
|
}
|
|
};
|
|
|
|
void RunTest_PostDelayedTask_SharedTimer_SubPump() {
|
|
MessageLoop loop(MessageLoop::TYPE_UI);
|
|
|
|
// Test that the interval of the timer, used to run the next delayed task, is
|
|
// set to a value corresponding to when the next delayed task should run.
|
|
|
|
// By setting num_tasks to 1, we ensure that the first task to run causes the
|
|
// run loop to exit.
|
|
int num_tasks = 1;
|
|
Time run_time;
|
|
|
|
loop.PostTask(FROM_HERE, new SubPumpTask());
|
|
|
|
// This very delayed task should never run.
|
|
loop.PostDelayedTask(
|
|
FROM_HERE, new RecordRunTimeTask(&run_time, &num_tasks), 1000000);
|
|
|
|
// This slightly delayed task should run from within SubPumpTask::Run().
|
|
loop.PostDelayedTask(
|
|
FROM_HERE, new SubPumpQuitTask(), 10);
|
|
|
|
Time start_time = Time::Now();
|
|
|
|
loop.Run();
|
|
EXPECT_EQ(1, num_tasks);
|
|
|
|
// Ensure that we ran in far less time than the slower timer.
|
|
TimeDelta total_time = Time::Now() - start_time;
|
|
EXPECT_GT(5000, total_time.InMilliseconds());
|
|
|
|
// In case both timers somehow run at nearly the same time, sleep a little
|
|
// and then run all pending to force them both to have run. This is just
|
|
// encouraging flakiness if there is any.
|
|
PlatformThread::Sleep(100);
|
|
loop.RunAllPending();
|
|
|
|
EXPECT_TRUE(run_time.is_null());
|
|
}
|
|
|
|
#endif // defined(OS_WIN)
|
|
|
|
class RecordDeletionTask : public Task {
|
|
public:
|
|
RecordDeletionTask(Task* post_on_delete, bool* was_deleted)
|
|
: post_on_delete_(post_on_delete), was_deleted_(was_deleted) {
|
|
}
|
|
~RecordDeletionTask() {
|
|
*was_deleted_ = true;
|
|
if (post_on_delete_)
|
|
MessageLoop::current()->PostTask(FROM_HERE, post_on_delete_);
|
|
}
|
|
virtual void Run() {}
|
|
private:
|
|
Task* post_on_delete_;
|
|
bool* was_deleted_;
|
|
};
|
|
|
|
void RunTest_EnsureTaskDeletion(MessageLoop::Type message_loop_type) {
|
|
bool a_was_deleted = false;
|
|
bool b_was_deleted = false;
|
|
{
|
|
MessageLoop loop(message_loop_type);
|
|
loop.PostTask(
|
|
FROM_HERE, new RecordDeletionTask(NULL, &a_was_deleted));
|
|
loop.PostDelayedTask(
|
|
FROM_HERE, new RecordDeletionTask(NULL, &b_was_deleted), 1000);
|
|
}
|
|
EXPECT_TRUE(a_was_deleted);
|
|
EXPECT_TRUE(b_was_deleted);
|
|
}
|
|
|
|
void RunTest_EnsureTaskDeletion_Chain(MessageLoop::Type message_loop_type) {
|
|
bool a_was_deleted = false;
|
|
bool b_was_deleted = false;
|
|
bool c_was_deleted = false;
|
|
{
|
|
MessageLoop loop(message_loop_type);
|
|
RecordDeletionTask* a = new RecordDeletionTask(NULL, &a_was_deleted);
|
|
RecordDeletionTask* b = new RecordDeletionTask(a, &b_was_deleted);
|
|
RecordDeletionTask* c = new RecordDeletionTask(b, &c_was_deleted);
|
|
loop.PostTask(FROM_HERE, c);
|
|
}
|
|
EXPECT_TRUE(a_was_deleted);
|
|
EXPECT_TRUE(b_was_deleted);
|
|
EXPECT_TRUE(c_was_deleted);
|
|
}
|
|
|
|
class NestingTest : public Task {
|
|
public:
|
|
explicit NestingTest(int* depth) : depth_(depth) {
|
|
}
|
|
void Run() {
|
|
if (*depth_ > 0) {
|
|
*depth_ -= 1;
|
|
MessageLoop::current()->PostTask(FROM_HERE, new NestingTest(depth_));
|
|
|
|
MessageLoop::current()->SetNestableTasksAllowed(true);
|
|
MessageLoop::current()->Run();
|
|
}
|
|
MessageLoop::current()->Quit();
|
|
}
|
|
private:
|
|
int* depth_;
|
|
};
|
|
|
|
#if defined(OS_WIN)
|
|
|
|
LONG WINAPI BadExceptionHandler(EXCEPTION_POINTERS *ex_info) {
|
|
ADD_FAILURE() << "bad exception handler";
|
|
::ExitProcess(ex_info->ExceptionRecord->ExceptionCode);
|
|
return EXCEPTION_EXECUTE_HANDLER;
|
|
}
|
|
|
|
// This task throws an SEH exception: initially write to an invalid address.
|
|
// If the right SEH filter is installed, it will fix the error.
|
|
class CrasherTask : public Task {
|
|
public:
|
|
// Ctor. If trash_SEH_handler is true, the task will override the unhandled
|
|
// exception handler with one sure to crash this test.
|
|
explicit CrasherTask(bool trash_SEH_handler)
|
|
: trash_SEH_handler_(trash_SEH_handler) {
|
|
}
|
|
void Run() {
|
|
PlatformThread::Sleep(1);
|
|
if (trash_SEH_handler_)
|
|
::SetUnhandledExceptionFilter(&BadExceptionHandler);
|
|
// Generate a SEH fault. We do it in asm to make sure we know how to undo
|
|
// the damage.
|
|
|
|
#if defined(_M_IX86)
|
|
|
|
__asm {
|
|
mov eax, dword ptr [CrasherTask::bad_array_]
|
|
mov byte ptr [eax], 66
|
|
}
|
|
|
|
#elif defined(_M_X64)
|
|
|
|
bad_array_[0] = 66;
|
|
|
|
#else
|
|
#error "needs architecture support"
|
|
#endif
|
|
|
|
MessageLoop::current()->Quit();
|
|
}
|
|
// Points the bad array to a valid memory location.
|
|
static void FixError() {
|
|
bad_array_ = &valid_store_;
|
|
}
|
|
|
|
private:
|
|
bool trash_SEH_handler_;
|
|
static volatile char* bad_array_;
|
|
static char valid_store_;
|
|
};
|
|
|
|
volatile char* CrasherTask::bad_array_ = 0;
|
|
char CrasherTask::valid_store_ = 0;
|
|
|
|
// This SEH filter fixes the problem and retries execution. Fixing requires
|
|
// that the last instruction: mov eax, [CrasherTask::bad_array_] to be retried
|
|
// so we move the instruction pointer 5 bytes back.
|
|
LONG WINAPI HandleCrasherTaskException(EXCEPTION_POINTERS *ex_info) {
|
|
if (ex_info->ExceptionRecord->ExceptionCode != EXCEPTION_ACCESS_VIOLATION)
|
|
return EXCEPTION_EXECUTE_HANDLER;
|
|
|
|
CrasherTask::FixError();
|
|
|
|
#if defined(_M_IX86)
|
|
|
|
ex_info->ContextRecord->Eip -= 5;
|
|
|
|
#elif defined(_M_X64)
|
|
|
|
ex_info->ContextRecord->Rip -= 5;
|
|
|
|
#endif
|
|
|
|
return EXCEPTION_CONTINUE_EXECUTION;
|
|
}
|
|
|
|
void RunTest_Crasher(MessageLoop::Type message_loop_type) {
|
|
MessageLoop loop(message_loop_type);
|
|
|
|
if (::IsDebuggerPresent())
|
|
return;
|
|
|
|
LPTOP_LEVEL_EXCEPTION_FILTER old_SEH_filter =
|
|
::SetUnhandledExceptionFilter(&HandleCrasherTaskException);
|
|
|
|
MessageLoop::current()->PostTask(FROM_HERE, new CrasherTask(false));
|
|
MessageLoop::current()->set_exception_restoration(true);
|
|
MessageLoop::current()->Run();
|
|
MessageLoop::current()->set_exception_restoration(false);
|
|
|
|
::SetUnhandledExceptionFilter(old_SEH_filter);
|
|
}
|
|
|
|
void RunTest_CrasherNasty(MessageLoop::Type message_loop_type) {
|
|
MessageLoop loop(message_loop_type);
|
|
|
|
if (::IsDebuggerPresent())
|
|
return;
|
|
|
|
LPTOP_LEVEL_EXCEPTION_FILTER old_SEH_filter =
|
|
::SetUnhandledExceptionFilter(&HandleCrasherTaskException);
|
|
|
|
MessageLoop::current()->PostTask(FROM_HERE, new CrasherTask(true));
|
|
MessageLoop::current()->set_exception_restoration(true);
|
|
MessageLoop::current()->Run();
|
|
MessageLoop::current()->set_exception_restoration(false);
|
|
|
|
::SetUnhandledExceptionFilter(old_SEH_filter);
|
|
}
|
|
|
|
#endif // defined(OS_WIN)
|
|
|
|
void RunTest_Nesting(MessageLoop::Type message_loop_type) {
|
|
MessageLoop loop(message_loop_type);
|
|
|
|
int depth = 100;
|
|
MessageLoop::current()->PostTask(FROM_HERE, new NestingTest(&depth));
|
|
MessageLoop::current()->Run();
|
|
EXPECT_EQ(depth, 0);
|
|
}
|
|
|
|
const wchar_t* const kMessageBoxTitle = L"MessageLoop Unit Test";
|
|
|
|
enum TaskType {
|
|
MESSAGEBOX,
|
|
ENDDIALOG,
|
|
RECURSIVE,
|
|
TIMEDMESSAGELOOP,
|
|
QUITMESSAGELOOP,
|
|
ORDERERD,
|
|
PUMPS,
|
|
};
|
|
|
|
// Saves the order in which the tasks executed.
|
|
struct TaskItem {
|
|
TaskItem(TaskType t, int c, bool s)
|
|
: type(t),
|
|
cookie(c),
|
|
start(s) {
|
|
}
|
|
|
|
TaskType type;
|
|
int cookie;
|
|
bool start;
|
|
|
|
bool operator == (const TaskItem& other) const {
|
|
return type == other.type && cookie == other.cookie && start == other.start;
|
|
}
|
|
};
|
|
|
|
typedef std::vector<TaskItem> TaskList;
|
|
|
|
std::ostream& operator <<(std::ostream& os, TaskType type) {
|
|
switch (type) {
|
|
case MESSAGEBOX: os << "MESSAGEBOX"; break;
|
|
case ENDDIALOG: os << "ENDDIALOG"; break;
|
|
case RECURSIVE: os << "RECURSIVE"; break;
|
|
case TIMEDMESSAGELOOP: os << "TIMEDMESSAGELOOP"; break;
|
|
case QUITMESSAGELOOP: os << "QUITMESSAGELOOP"; break;
|
|
case ORDERERD: os << "ORDERERD"; break;
|
|
case PUMPS: os << "PUMPS"; break;
|
|
default:
|
|
NOTREACHED();
|
|
os << "Unknown TaskType";
|
|
break;
|
|
}
|
|
return os;
|
|
}
|
|
|
|
std::ostream& operator <<(std::ostream& os, const TaskItem& item) {
|
|
if (item.start)
|
|
return os << item.type << " " << item.cookie << " starts";
|
|
else
|
|
return os << item.type << " " << item.cookie << " ends";
|
|
}
|
|
|
|
// Saves the order the tasks ran.
|
|
class OrderedTasks : public Task {
|
|
public:
|
|
OrderedTasks(TaskList* order, int cookie)
|
|
: order_(order),
|
|
type_(ORDERERD),
|
|
cookie_(cookie) {
|
|
}
|
|
OrderedTasks(TaskList* order, TaskType type, int cookie)
|
|
: order_(order),
|
|
type_(type),
|
|
cookie_(cookie) {
|
|
}
|
|
|
|
void RunStart() {
|
|
TaskItem item(type_, cookie_, true);
|
|
DLOG(INFO) << item;
|
|
order_->push_back(item);
|
|
}
|
|
void RunEnd() {
|
|
TaskItem item(type_, cookie_, false);
|
|
DLOG(INFO) << item;
|
|
order_->push_back(item);
|
|
}
|
|
|
|
virtual void Run() {
|
|
RunStart();
|
|
RunEnd();
|
|
}
|
|
|
|
protected:
|
|
TaskList* order() const {
|
|
return order_;
|
|
}
|
|
|
|
int cookie() const {
|
|
return cookie_;
|
|
}
|
|
|
|
private:
|
|
TaskList* order_;
|
|
TaskType type_;
|
|
int cookie_;
|
|
};
|
|
|
|
#if defined(OS_WIN)
|
|
|
|
// MessageLoop implicitly start a "modal message loop". Modal dialog boxes,
|
|
// common controls (like OpenFile) and StartDoc printing function can cause
|
|
// implicit message loops.
|
|
class MessageBoxTask : public OrderedTasks {
|
|
public:
|
|
MessageBoxTask(TaskList* order, int cookie, bool is_reentrant)
|
|
: OrderedTasks(order, MESSAGEBOX, cookie),
|
|
is_reentrant_(is_reentrant) {
|
|
}
|
|
|
|
virtual void Run() {
|
|
RunStart();
|
|
if (is_reentrant_)
|
|
MessageLoop::current()->SetNestableTasksAllowed(true);
|
|
MessageBox(NULL, L"Please wait...", kMessageBoxTitle, MB_OK);
|
|
RunEnd();
|
|
}
|
|
|
|
private:
|
|
bool is_reentrant_;
|
|
};
|
|
|
|
// Will end the MessageBox.
|
|
class EndDialogTask : public OrderedTasks {
|
|
public:
|
|
EndDialogTask(TaskList* order, int cookie)
|
|
: OrderedTasks(order, ENDDIALOG, cookie) {
|
|
}
|
|
|
|
virtual void Run() {
|
|
RunStart();
|
|
HWND window = GetActiveWindow();
|
|
if (window != NULL) {
|
|
EXPECT_NE(EndDialog(window, IDCONTINUE), 0);
|
|
// Cheap way to signal that the window wasn't found if RunEnd() isn't
|
|
// called.
|
|
RunEnd();
|
|
}
|
|
}
|
|
};
|
|
|
|
#endif // defined(OS_WIN)
|
|
|
|
class RecursiveTask : public OrderedTasks {
|
|
public:
|
|
RecursiveTask(int depth, TaskList* order, int cookie, bool is_reentrant)
|
|
: OrderedTasks(order, RECURSIVE, cookie),
|
|
depth_(depth),
|
|
is_reentrant_(is_reentrant) {
|
|
}
|
|
|
|
virtual void Run() {
|
|
RunStart();
|
|
if (depth_ > 0) {
|
|
if (is_reentrant_)
|
|
MessageLoop::current()->SetNestableTasksAllowed(true);
|
|
MessageLoop::current()->PostTask(FROM_HERE,
|
|
new RecursiveTask(depth_ - 1, order(), cookie(), is_reentrant_));
|
|
}
|
|
RunEnd();
|
|
}
|
|
|
|
private:
|
|
int depth_;
|
|
bool is_reentrant_;
|
|
};
|
|
|
|
class QuitTask : public OrderedTasks {
|
|
public:
|
|
QuitTask(TaskList* order, int cookie)
|
|
: OrderedTasks(order, QUITMESSAGELOOP, cookie) {
|
|
}
|
|
|
|
virtual void Run() {
|
|
RunStart();
|
|
MessageLoop::current()->Quit();
|
|
RunEnd();
|
|
}
|
|
};
|
|
|
|
#if defined(OS_WIN)
|
|
|
|
class Recursive2Tasks : public Task {
|
|
public:
|
|
Recursive2Tasks(MessageLoop* target,
|
|
HANDLE event,
|
|
bool expect_window,
|
|
TaskList* order,
|
|
bool is_reentrant)
|
|
: target_(target),
|
|
event_(event),
|
|
expect_window_(expect_window),
|
|
order_(order),
|
|
is_reentrant_(is_reentrant) {
|
|
}
|
|
|
|
virtual void Run() {
|
|
target_->PostTask(FROM_HERE,
|
|
new RecursiveTask(2, order_, 1, is_reentrant_));
|
|
target_->PostTask(FROM_HERE,
|
|
new MessageBoxTask(order_, 2, is_reentrant_));
|
|
target_->PostTask(FROM_HERE,
|
|
new RecursiveTask(2, order_, 3, is_reentrant_));
|
|
// The trick here is that for recursive task processing, this task will be
|
|
// ran _inside_ the MessageBox message loop, dismissing the MessageBox
|
|
// without a chance.
|
|
// For non-recursive task processing, this will be executed _after_ the
|
|
// MessageBox will have been dismissed by the code below, where
|
|
// expect_window_ is true.
|
|
target_->PostTask(FROM_HERE, new EndDialogTask(order_, 4));
|
|
target_->PostTask(FROM_HERE, new QuitTask(order_, 5));
|
|
|
|
// Enforce that every tasks are sent before starting to run the main thread
|
|
// message loop.
|
|
ASSERT_TRUE(SetEvent(event_));
|
|
|
|
// Poll for the MessageBox. Don't do this at home! At the speed we do it,
|
|
// you will never realize one MessageBox was shown.
|
|
for (; expect_window_;) {
|
|
HWND window = FindWindow(L"#32770", kMessageBoxTitle);
|
|
if (window) {
|
|
// Dismiss it.
|
|
for (;;) {
|
|
HWND button = FindWindowEx(window, NULL, L"Button", NULL);
|
|
if (button != NULL) {
|
|
EXPECT_TRUE(0 == SendMessage(button, WM_LBUTTONDOWN, 0, 0));
|
|
EXPECT_TRUE(0 == SendMessage(button, WM_LBUTTONUP, 0, 0));
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
MessageLoop* target_;
|
|
HANDLE event_;
|
|
TaskList* order_;
|
|
bool expect_window_;
|
|
bool is_reentrant_;
|
|
};
|
|
|
|
#endif // defined(OS_WIN)
|
|
|
|
void RunTest_RecursiveDenial1(MessageLoop::Type message_loop_type) {
|
|
MessageLoop loop(message_loop_type);
|
|
|
|
EXPECT_TRUE(MessageLoop::current()->NestableTasksAllowed());
|
|
TaskList order;
|
|
MessageLoop::current()->PostTask(FROM_HERE,
|
|
new RecursiveTask(2, &order, 1, false));
|
|
MessageLoop::current()->PostTask(FROM_HERE,
|
|
new RecursiveTask(2, &order, 2, false));
|
|
MessageLoop::current()->PostTask(FROM_HERE, new QuitTask(&order, 3));
|
|
|
|
MessageLoop::current()->Run();
|
|
|
|
// FIFO order.
|
|
ASSERT_EQ(14U, order.size());
|
|
EXPECT_EQ(order[ 0], TaskItem(RECURSIVE, 1, true));
|
|
EXPECT_EQ(order[ 1], TaskItem(RECURSIVE, 1, false));
|
|
EXPECT_EQ(order[ 2], TaskItem(RECURSIVE, 2, true));
|
|
EXPECT_EQ(order[ 3], TaskItem(RECURSIVE, 2, false));
|
|
EXPECT_EQ(order[ 4], TaskItem(QUITMESSAGELOOP, 3, true));
|
|
EXPECT_EQ(order[ 5], TaskItem(QUITMESSAGELOOP, 3, false));
|
|
EXPECT_EQ(order[ 6], TaskItem(RECURSIVE, 1, true));
|
|
EXPECT_EQ(order[ 7], TaskItem(RECURSIVE, 1, false));
|
|
EXPECT_EQ(order[ 8], TaskItem(RECURSIVE, 2, true));
|
|
EXPECT_EQ(order[ 9], TaskItem(RECURSIVE, 2, false));
|
|
EXPECT_EQ(order[10], TaskItem(RECURSIVE, 1, true));
|
|
EXPECT_EQ(order[11], TaskItem(RECURSIVE, 1, false));
|
|
EXPECT_EQ(order[12], TaskItem(RECURSIVE, 2, true));
|
|
EXPECT_EQ(order[13], TaskItem(RECURSIVE, 2, false));
|
|
}
|
|
|
|
void RunTest_RecursiveSupport1(MessageLoop::Type message_loop_type) {
|
|
MessageLoop loop(message_loop_type);
|
|
|
|
TaskList order;
|
|
MessageLoop::current()->PostTask(FROM_HERE,
|
|
new RecursiveTask(2, &order, 1, true));
|
|
MessageLoop::current()->PostTask(FROM_HERE,
|
|
new RecursiveTask(2, &order, 2, true));
|
|
MessageLoop::current()->PostTask(FROM_HERE,
|
|
new QuitTask(&order, 3));
|
|
|
|
MessageLoop::current()->Run();
|
|
|
|
// FIFO order.
|
|
ASSERT_EQ(14U, order.size());
|
|
EXPECT_EQ(order[ 0], TaskItem(RECURSIVE, 1, true));
|
|
EXPECT_EQ(order[ 1], TaskItem(RECURSIVE, 1, false));
|
|
EXPECT_EQ(order[ 2], TaskItem(RECURSIVE, 2, true));
|
|
EXPECT_EQ(order[ 3], TaskItem(RECURSIVE, 2, false));
|
|
EXPECT_EQ(order[ 4], TaskItem(QUITMESSAGELOOP, 3, true));
|
|
EXPECT_EQ(order[ 5], TaskItem(QUITMESSAGELOOP, 3, false));
|
|
EXPECT_EQ(order[ 6], TaskItem(RECURSIVE, 1, true));
|
|
EXPECT_EQ(order[ 7], TaskItem(RECURSIVE, 1, false));
|
|
EXPECT_EQ(order[ 8], TaskItem(RECURSIVE, 2, true));
|
|
EXPECT_EQ(order[ 9], TaskItem(RECURSIVE, 2, false));
|
|
EXPECT_EQ(order[10], TaskItem(RECURSIVE, 1, true));
|
|
EXPECT_EQ(order[11], TaskItem(RECURSIVE, 1, false));
|
|
EXPECT_EQ(order[12], TaskItem(RECURSIVE, 2, true));
|
|
EXPECT_EQ(order[13], TaskItem(RECURSIVE, 2, false));
|
|
}
|
|
|
|
#if defined(OS_WIN)
|
|
// TODO(darin): These tests need to be ported since they test critical
|
|
// message loop functionality.
|
|
|
|
// A side effect of this test is the generation a beep. Sorry.
|
|
void RunTest_RecursiveDenial2(MessageLoop::Type message_loop_type) {
|
|
MessageLoop loop(message_loop_type);
|
|
|
|
Thread worker("RecursiveDenial2_worker");
|
|
Thread::Options options;
|
|
options.message_loop_type = message_loop_type;
|
|
ASSERT_EQ(true, worker.StartWithOptions(options));
|
|
TaskList order;
|
|
ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL));
|
|
worker.message_loop()->PostTask(FROM_HERE,
|
|
new Recursive2Tasks(MessageLoop::current(),
|
|
event,
|
|
true,
|
|
&order,
|
|
false));
|
|
// Let the other thread execute.
|
|
WaitForSingleObject(event, INFINITE);
|
|
MessageLoop::current()->Run();
|
|
|
|
ASSERT_EQ(order.size(), 17);
|
|
EXPECT_EQ(order[ 0], TaskItem(RECURSIVE, 1, true));
|
|
EXPECT_EQ(order[ 1], TaskItem(RECURSIVE, 1, false));
|
|
EXPECT_EQ(order[ 2], TaskItem(MESSAGEBOX, 2, true));
|
|
EXPECT_EQ(order[ 3], TaskItem(MESSAGEBOX, 2, false));
|
|
EXPECT_EQ(order[ 4], TaskItem(RECURSIVE, 3, true));
|
|
EXPECT_EQ(order[ 5], TaskItem(RECURSIVE, 3, false));
|
|
// When EndDialogTask is processed, the window is already dismissed, hence no
|
|
// "end" entry.
|
|
EXPECT_EQ(order[ 6], TaskItem(ENDDIALOG, 4, true));
|
|
EXPECT_EQ(order[ 7], TaskItem(QUITMESSAGELOOP, 5, true));
|
|
EXPECT_EQ(order[ 8], TaskItem(QUITMESSAGELOOP, 5, false));
|
|
EXPECT_EQ(order[ 9], TaskItem(RECURSIVE, 1, true));
|
|
EXPECT_EQ(order[10], TaskItem(RECURSIVE, 1, false));
|
|
EXPECT_EQ(order[11], TaskItem(RECURSIVE, 3, true));
|
|
EXPECT_EQ(order[12], TaskItem(RECURSIVE, 3, false));
|
|
EXPECT_EQ(order[13], TaskItem(RECURSIVE, 1, true));
|
|
EXPECT_EQ(order[14], TaskItem(RECURSIVE, 1, false));
|
|
EXPECT_EQ(order[15], TaskItem(RECURSIVE, 3, true));
|
|
EXPECT_EQ(order[16], TaskItem(RECURSIVE, 3, false));
|
|
}
|
|
|
|
// A side effect of this test is the generation a beep. Sorry. This test also
|
|
// needs to process windows messages on the current thread.
|
|
void RunTest_RecursiveSupport2(MessageLoop::Type message_loop_type) {
|
|
MessageLoop loop(message_loop_type);
|
|
|
|
Thread worker("RecursiveSupport2_worker");
|
|
Thread::Options options;
|
|
options.message_loop_type = message_loop_type;
|
|
ASSERT_EQ(true, worker.StartWithOptions(options));
|
|
TaskList order;
|
|
ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL));
|
|
worker.message_loop()->PostTask(FROM_HERE,
|
|
new Recursive2Tasks(MessageLoop::current(),
|
|
event,
|
|
false,
|
|
&order,
|
|
true));
|
|
// Let the other thread execute.
|
|
WaitForSingleObject(event, INFINITE);
|
|
MessageLoop::current()->Run();
|
|
|
|
ASSERT_EQ(order.size(), 18);
|
|
EXPECT_EQ(order[ 0], TaskItem(RECURSIVE, 1, true));
|
|
EXPECT_EQ(order[ 1], TaskItem(RECURSIVE, 1, false));
|
|
EXPECT_EQ(order[ 2], TaskItem(MESSAGEBOX, 2, true));
|
|
// Note that this executes in the MessageBox modal loop.
|
|
EXPECT_EQ(order[ 3], TaskItem(RECURSIVE, 3, true));
|
|
EXPECT_EQ(order[ 4], TaskItem(RECURSIVE, 3, false));
|
|
EXPECT_EQ(order[ 5], TaskItem(ENDDIALOG, 4, true));
|
|
EXPECT_EQ(order[ 6], TaskItem(ENDDIALOG, 4, false));
|
|
EXPECT_EQ(order[ 7], TaskItem(MESSAGEBOX, 2, false));
|
|
/* The order can subtly change here. The reason is that when RecursiveTask(1)
|
|
is called in the main thread, if it is faster than getting to the
|
|
PostTask(FROM_HERE, QuitTask) execution, the order of task execution can
|
|
change. We don't care anyway that the order isn't correct.
|
|
EXPECT_EQ(order[ 8], TaskItem(QUITMESSAGELOOP, 5, true));
|
|
EXPECT_EQ(order[ 9], TaskItem(QUITMESSAGELOOP, 5, false));
|
|
EXPECT_EQ(order[10], TaskItem(RECURSIVE, 1, true));
|
|
EXPECT_EQ(order[11], TaskItem(RECURSIVE, 1, false));
|
|
*/
|
|
EXPECT_EQ(order[12], TaskItem(RECURSIVE, 3, true));
|
|
EXPECT_EQ(order[13], TaskItem(RECURSIVE, 3, false));
|
|
EXPECT_EQ(order[14], TaskItem(RECURSIVE, 1, true));
|
|
EXPECT_EQ(order[15], TaskItem(RECURSIVE, 1, false));
|
|
EXPECT_EQ(order[16], TaskItem(RECURSIVE, 3, true));
|
|
EXPECT_EQ(order[17], TaskItem(RECURSIVE, 3, false));
|
|
}
|
|
|
|
#endif // defined(OS_WIN)
|
|
|
|
class TaskThatPumps : public OrderedTasks {
|
|
public:
|
|
TaskThatPumps(TaskList* order, int cookie)
|
|
: OrderedTasks(order, PUMPS, cookie) {
|
|
}
|
|
|
|
virtual void Run() {
|
|
RunStart();
|
|
bool old_state = MessageLoop::current()->NestableTasksAllowed();
|
|
MessageLoop::current()->SetNestableTasksAllowed(true);
|
|
MessageLoop::current()->RunAllPending();
|
|
MessageLoop::current()->SetNestableTasksAllowed(old_state);
|
|
RunEnd();
|
|
}
|
|
};
|
|
|
|
// Tests that non nestable tasks run in FIFO if there are no nested loops.
|
|
void RunTest_NonNestableWithNoNesting(MessageLoop::Type message_loop_type) {
|
|
MessageLoop loop(message_loop_type);
|
|
|
|
TaskList order;
|
|
|
|
Task* task = new OrderedTasks(&order, 1);
|
|
MessageLoop::current()->PostNonNestableTask(FROM_HERE, task);
|
|
MessageLoop::current()->PostTask(FROM_HERE, new OrderedTasks(&order, 2));
|
|
MessageLoop::current()->PostTask(FROM_HERE, new QuitTask(&order, 3));
|
|
MessageLoop::current()->Run();
|
|
|
|
// FIFO order.
|
|
ASSERT_EQ(6U, order.size());
|
|
EXPECT_EQ(order[ 0], TaskItem(ORDERERD, 1, true));
|
|
EXPECT_EQ(order[ 1], TaskItem(ORDERERD, 1, false));
|
|
EXPECT_EQ(order[ 2], TaskItem(ORDERERD, 2, true));
|
|
EXPECT_EQ(order[ 3], TaskItem(ORDERERD, 2, false));
|
|
EXPECT_EQ(order[ 4], TaskItem(QUITMESSAGELOOP, 3, true));
|
|
EXPECT_EQ(order[ 5], TaskItem(QUITMESSAGELOOP, 3, false));
|
|
}
|
|
|
|
// Tests that non nestable tasks don't run when there's code in the call stack.
|
|
void RunTest_NonNestableInNestedLoop(MessageLoop::Type message_loop_type) {
|
|
MessageLoop loop(message_loop_type);
|
|
|
|
TaskList order;
|
|
|
|
MessageLoop::current()->PostTask(FROM_HERE,
|
|
new TaskThatPumps(&order, 1));
|
|
Task* task = new OrderedTasks(&order, 2);
|
|
MessageLoop::current()->PostNonNestableTask(FROM_HERE, task);
|
|
MessageLoop::current()->PostTask(FROM_HERE, new OrderedTasks(&order, 3));
|
|
MessageLoop::current()->PostTask(FROM_HERE, new OrderedTasks(&order, 4));
|
|
Task* non_nestable_quit = new QuitTask(&order, 5);
|
|
MessageLoop::current()->PostNonNestableTask(FROM_HERE, non_nestable_quit);
|
|
|
|
MessageLoop::current()->Run();
|
|
|
|
// FIFO order.
|
|
ASSERT_EQ(10U, order.size());
|
|
EXPECT_EQ(order[ 0], TaskItem(PUMPS, 1, true));
|
|
EXPECT_EQ(order[ 1], TaskItem(ORDERERD, 3, true));
|
|
EXPECT_EQ(order[ 2], TaskItem(ORDERERD, 3, false));
|
|
EXPECT_EQ(order[ 3], TaskItem(ORDERERD, 4, true));
|
|
EXPECT_EQ(order[ 4], TaskItem(ORDERERD, 4, false));
|
|
EXPECT_EQ(order[ 5], TaskItem(PUMPS, 1, false));
|
|
EXPECT_EQ(order[ 6], TaskItem(ORDERERD, 2, true));
|
|
EXPECT_EQ(order[ 7], TaskItem(ORDERERD, 2, false));
|
|
EXPECT_EQ(order[ 8], TaskItem(QUITMESSAGELOOP, 5, true));
|
|
EXPECT_EQ(order[ 9], TaskItem(QUITMESSAGELOOP, 5, false));
|
|
}
|
|
|
|
#if defined(OS_WIN)
|
|
|
|
class DispatcherImpl : public MessageLoopForUI::Dispatcher {
|
|
public:
|
|
DispatcherImpl() : dispatch_count_(0) {}
|
|
|
|
virtual bool Dispatch(const MSG& msg) {
|
|
::TranslateMessage(&msg);
|
|
::DispatchMessage(&msg);
|
|
return (++dispatch_count_ != 2);
|
|
}
|
|
|
|
int dispatch_count_;
|
|
};
|
|
|
|
void RunTest_Dispatcher(MessageLoop::Type message_loop_type) {
|
|
MessageLoop loop(message_loop_type);
|
|
|
|
class MyTask : public Task {
|
|
public:
|
|
virtual void Run() {
|
|
PostMessage(NULL, WM_LBUTTONDOWN, 0, 0);
|
|
PostMessage(NULL, WM_LBUTTONUP, 'A', 0);
|
|
}
|
|
};
|
|
Task* task = new MyTask();
|
|
MessageLoop::current()->PostDelayedTask(FROM_HERE, task, 100);
|
|
DispatcherImpl dispatcher;
|
|
MessageLoopForUI::current()->Run(&dispatcher);
|
|
ASSERT_EQ(2, dispatcher.dispatch_count_);
|
|
}
|
|
|
|
class TestIOHandler : public MessageLoopForIO::IOHandler {
|
|
public:
|
|
TestIOHandler(const wchar_t* name, HANDLE signal, bool wait);
|
|
|
|
virtual void OnIOCompleted(MessageLoopForIO::IOContext* context,
|
|
DWORD bytes_transfered, DWORD error);
|
|
|
|
void Init();
|
|
void WaitForIO();
|
|
OVERLAPPED* context() { return &context_.overlapped; }
|
|
DWORD size() { return sizeof(buffer_); }
|
|
|
|
private:
|
|
char buffer_[48];
|
|
MessageLoopForIO::IOContext context_;
|
|
HANDLE signal_;
|
|
ScopedHandle file_;
|
|
bool wait_;
|
|
};
|
|
|
|
TestIOHandler::TestIOHandler(const wchar_t* name, HANDLE signal, bool wait)
|
|
: signal_(signal), wait_(wait) {
|
|
memset(buffer_, 0, sizeof(buffer_));
|
|
memset(&context_, 0, sizeof(context_));
|
|
context_.handler = this;
|
|
|
|
file_.Set(CreateFile(name, GENERIC_READ, 0, NULL, OPEN_EXISTING,
|
|
FILE_FLAG_OVERLAPPED, NULL));
|
|
EXPECT_TRUE(file_.IsValid());
|
|
}
|
|
|
|
void TestIOHandler::Init() {
|
|
MessageLoopForIO::current()->RegisterIOHandler(file_, this);
|
|
|
|
DWORD read;
|
|
EXPECT_FALSE(ReadFile(file_, buffer_, size(), &read, context()));
|
|
EXPECT_EQ(ERROR_IO_PENDING, GetLastError());
|
|
if (wait_)
|
|
WaitForIO();
|
|
}
|
|
|
|
void TestIOHandler::OnIOCompleted(MessageLoopForIO::IOContext* context,
|
|
DWORD bytes_transfered, DWORD error) {
|
|
ASSERT_TRUE(context == &context_);
|
|
ASSERT_TRUE(SetEvent(signal_));
|
|
}
|
|
|
|
void TestIOHandler::WaitForIO() {
|
|
EXPECT_TRUE(MessageLoopForIO::current()->WaitForIOCompletion(300, this));
|
|
EXPECT_TRUE(MessageLoopForIO::current()->WaitForIOCompletion(400, this));
|
|
}
|
|
|
|
class IOHandlerTask : public Task {
|
|
public:
|
|
explicit IOHandlerTask(TestIOHandler* handler) : handler_(handler) {}
|
|
virtual void Run() {
|
|
handler_->Init();
|
|
}
|
|
|
|
private:
|
|
TestIOHandler* handler_;
|
|
};
|
|
|
|
void RunTest_IOHandler() {
|
|
ScopedHandle callback_called(CreateEvent(NULL, TRUE, FALSE, NULL));
|
|
ASSERT_TRUE(callback_called.IsValid());
|
|
|
|
const wchar_t* kPipeName = L"\\\\.\\pipe\\iohandler_pipe";
|
|
ScopedHandle server(CreateNamedPipe(kPipeName, PIPE_ACCESS_OUTBOUND, 0, 1,
|
|
0, 0, 0, NULL));
|
|
ASSERT_TRUE(server.IsValid());
|
|
|
|
Thread thread("IOHandler test");
|
|
Thread::Options options;
|
|
options.message_loop_type = MessageLoop::TYPE_IO;
|
|
ASSERT_TRUE(thread.StartWithOptions(options));
|
|
|
|
MessageLoop* thread_loop = thread.message_loop();
|
|
ASSERT_TRUE(NULL != thread_loop);
|
|
|
|
TestIOHandler handler(kPipeName, callback_called, false);
|
|
IOHandlerTask* task = new IOHandlerTask(&handler);
|
|
thread_loop->PostTask(FROM_HERE, task);
|
|
Sleep(100); // Make sure the thread runs and sleeps for lack of work.
|
|
|
|
const char buffer[] = "Hello there!";
|
|
DWORD written;
|
|
EXPECT_TRUE(WriteFile(server, buffer, sizeof(buffer), &written, NULL));
|
|
|
|
DWORD result = WaitForSingleObject(callback_called, 1000);
|
|
EXPECT_EQ(WAIT_OBJECT_0, result);
|
|
|
|
thread.Stop();
|
|
}
|
|
|
|
void RunTest_WaitForIO() {
|
|
ScopedHandle callback1_called(CreateEvent(NULL, TRUE, FALSE, NULL));
|
|
ScopedHandle callback2_called(CreateEvent(NULL, TRUE, FALSE, NULL));
|
|
ASSERT_TRUE(callback1_called.IsValid());
|
|
ASSERT_TRUE(callback2_called.IsValid());
|
|
|
|
const wchar_t* kPipeName1 = L"\\\\.\\pipe\\iohandler_pipe1";
|
|
const wchar_t* kPipeName2 = L"\\\\.\\pipe\\iohandler_pipe2";
|
|
ScopedHandle server1(CreateNamedPipe(kPipeName1, PIPE_ACCESS_OUTBOUND, 0, 1,
|
|
0, 0, 0, NULL));
|
|
ScopedHandle server2(CreateNamedPipe(kPipeName2, PIPE_ACCESS_OUTBOUND, 0, 1,
|
|
0, 0, 0, NULL));
|
|
ASSERT_TRUE(server1.IsValid());
|
|
ASSERT_TRUE(server2.IsValid());
|
|
|
|
Thread thread("IOHandler test");
|
|
Thread::Options options;
|
|
options.message_loop_type = MessageLoop::TYPE_IO;
|
|
ASSERT_TRUE(thread.StartWithOptions(options));
|
|
|
|
MessageLoop* thread_loop = thread.message_loop();
|
|
ASSERT_TRUE(NULL != thread_loop);
|
|
|
|
TestIOHandler handler1(kPipeName1, callback1_called, false);
|
|
TestIOHandler handler2(kPipeName2, callback2_called, true);
|
|
IOHandlerTask* task1 = new IOHandlerTask(&handler1);
|
|
IOHandlerTask* task2 = new IOHandlerTask(&handler2);
|
|
thread_loop->PostTask(FROM_HERE, task1);
|
|
Sleep(100); // Make sure the thread runs and sleeps for lack of work.
|
|
thread_loop->PostTask(FROM_HERE, task2);
|
|
Sleep(100);
|
|
|
|
// At this time handler1 is waiting to be called, and the thread is waiting
|
|
// on the Init method of handler2, filtering only handler2 callbacks.
|
|
|
|
const char buffer[] = "Hello there!";
|
|
DWORD written;
|
|
EXPECT_TRUE(WriteFile(server1, buffer, sizeof(buffer), &written, NULL));
|
|
Sleep(200);
|
|
EXPECT_EQ(WAIT_TIMEOUT, WaitForSingleObject(callback1_called, 0)) <<
|
|
"handler1 has not been called";
|
|
|
|
EXPECT_TRUE(WriteFile(server2, buffer, sizeof(buffer), &written, NULL));
|
|
|
|
HANDLE objects[2] = { callback1_called.Get(), callback2_called.Get() };
|
|
DWORD result = WaitForMultipleObjects(2, objects, TRUE, 1000);
|
|
EXPECT_EQ(WAIT_OBJECT_0, result);
|
|
|
|
thread.Stop();
|
|
}
|
|
|
|
#endif // defined(OS_WIN)
|
|
|
|
} // namespace
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Each test is run against each type of MessageLoop. That way we are sure
|
|
// that message loops work properly in all configurations. Of course, in some
|
|
// cases, a unit test may only be for a particular type of loop.
|
|
|
|
TEST(MessageLoopTest, PostTask) {
|
|
RunTest_PostTask(MessageLoop::TYPE_DEFAULT);
|
|
RunTest_PostTask(MessageLoop::TYPE_UI);
|
|
RunTest_PostTask(MessageLoop::TYPE_IO);
|
|
}
|
|
|
|
TEST(MessageLoopTest, PostTask_SEH) {
|
|
RunTest_PostTask_SEH(MessageLoop::TYPE_DEFAULT);
|
|
RunTest_PostTask_SEH(MessageLoop::TYPE_UI);
|
|
RunTest_PostTask_SEH(MessageLoop::TYPE_IO);
|
|
}
|
|
|
|
TEST(MessageLoopTest, PostDelayedTask_Basic) {
|
|
RunTest_PostDelayedTask_Basic(MessageLoop::TYPE_DEFAULT);
|
|
RunTest_PostDelayedTask_Basic(MessageLoop::TYPE_UI);
|
|
RunTest_PostDelayedTask_Basic(MessageLoop::TYPE_IO);
|
|
}
|
|
|
|
TEST(MessageLoopTest, PostDelayedTask_InDelayOrder) {
|
|
RunTest_PostDelayedTask_InDelayOrder(MessageLoop::TYPE_DEFAULT);
|
|
RunTest_PostDelayedTask_InDelayOrder(MessageLoop::TYPE_UI);
|
|
RunTest_PostDelayedTask_InDelayOrder(MessageLoop::TYPE_IO);
|
|
}
|
|
|
|
TEST(MessageLoopTest, PostDelayedTask_InPostOrder) {
|
|
RunTest_PostDelayedTask_InPostOrder(MessageLoop::TYPE_DEFAULT);
|
|
RunTest_PostDelayedTask_InPostOrder(MessageLoop::TYPE_UI);
|
|
RunTest_PostDelayedTask_InPostOrder(MessageLoop::TYPE_IO);
|
|
}
|
|
|
|
TEST(MessageLoopTest, PostDelayedTask_InPostOrder_2) {
|
|
RunTest_PostDelayedTask_InPostOrder_2(MessageLoop::TYPE_DEFAULT);
|
|
RunTest_PostDelayedTask_InPostOrder_2(MessageLoop::TYPE_UI);
|
|
RunTest_PostDelayedTask_InPostOrder_2(MessageLoop::TYPE_IO);
|
|
}
|
|
|
|
TEST(MessageLoopTest, PostDelayedTask_InPostOrder_3) {
|
|
RunTest_PostDelayedTask_InPostOrder_3(MessageLoop::TYPE_DEFAULT);
|
|
RunTest_PostDelayedTask_InPostOrder_3(MessageLoop::TYPE_UI);
|
|
RunTest_PostDelayedTask_InPostOrder_3(MessageLoop::TYPE_IO);
|
|
}
|
|
|
|
TEST(MessageLoopTest, PostDelayedTask_SharedTimer) {
|
|
RunTest_PostDelayedTask_SharedTimer(MessageLoop::TYPE_DEFAULT);
|
|
RunTest_PostDelayedTask_SharedTimer(MessageLoop::TYPE_UI);
|
|
RunTest_PostDelayedTask_SharedTimer(MessageLoop::TYPE_IO);
|
|
}
|
|
|
|
#if defined(OS_WIN)
|
|
TEST(MessageLoopTest, PostDelayedTask_SharedTimer_SubPump) {
|
|
RunTest_PostDelayedTask_SharedTimer_SubPump();
|
|
}
|
|
#endif
|
|
|
|
// TODO(darin): re-enable these tests once MessageLoop supports them again.
|
|
#if 0
|
|
TEST(MessageLoopTest, EnsureTaskDeletion) {
|
|
RunTest_EnsureTaskDeletion(MessageLoop::TYPE_DEFAULT);
|
|
RunTest_EnsureTaskDeletion(MessageLoop::TYPE_UI);
|
|
RunTest_EnsureTaskDeletion(MessageLoop::TYPE_IO);
|
|
}
|
|
|
|
TEST(MessageLoopTest, EnsureTaskDeletion_Chain) {
|
|
RunTest_EnsureTaskDeletion_Chain(MessageLoop::TYPE_DEFAULT);
|
|
RunTest_EnsureTaskDeletion_Chain(MessageLoop::TYPE_UI);
|
|
RunTest_EnsureTaskDeletion_Chain(MessageLoop::TYPE_IO);
|
|
}
|
|
#endif
|
|
|
|
#if defined(OS_WIN)
|
|
TEST(MessageLoopTest, Crasher) {
|
|
RunTest_Crasher(MessageLoop::TYPE_DEFAULT);
|
|
RunTest_Crasher(MessageLoop::TYPE_UI);
|
|
RunTest_Crasher(MessageLoop::TYPE_IO);
|
|
}
|
|
|
|
TEST(MessageLoopTest, CrasherNasty) {
|
|
RunTest_CrasherNasty(MessageLoop::TYPE_DEFAULT);
|
|
RunTest_CrasherNasty(MessageLoop::TYPE_UI);
|
|
RunTest_CrasherNasty(MessageLoop::TYPE_IO);
|
|
}
|
|
#endif // defined(OS_WIN)
|
|
|
|
TEST(MessageLoopTest, Nesting) {
|
|
RunTest_Nesting(MessageLoop::TYPE_DEFAULT);
|
|
RunTest_Nesting(MessageLoop::TYPE_UI);
|
|
RunTest_Nesting(MessageLoop::TYPE_IO);
|
|
}
|
|
|
|
TEST(MessageLoopTest, RecursiveDenial1) {
|
|
RunTest_RecursiveDenial1(MessageLoop::TYPE_DEFAULT);
|
|
RunTest_RecursiveDenial1(MessageLoop::TYPE_UI);
|
|
RunTest_RecursiveDenial1(MessageLoop::TYPE_IO);
|
|
}
|
|
|
|
TEST(MessageLoopTest, RecursiveSupport1) {
|
|
RunTest_RecursiveSupport1(MessageLoop::TYPE_DEFAULT);
|
|
RunTest_RecursiveSupport1(MessageLoop::TYPE_UI);
|
|
RunTest_RecursiveSupport1(MessageLoop::TYPE_IO);
|
|
}
|
|
|
|
#if defined(OS_WIN)
|
|
TEST(MessageLoopTest, RecursiveDenial2) {
|
|
RunTest_RecursiveDenial2(MessageLoop::TYPE_DEFAULT);
|
|
RunTest_RecursiveDenial2(MessageLoop::TYPE_UI);
|
|
RunTest_RecursiveDenial2(MessageLoop::TYPE_IO);
|
|
}
|
|
|
|
TEST(MessageLoopTest, RecursiveSupport2) {
|
|
// This test requires a UI loop
|
|
RunTest_RecursiveSupport2(MessageLoop::TYPE_UI);
|
|
}
|
|
#endif // defined(OS_WIN)
|
|
|
|
TEST(MessageLoopTest, NonNestableWithNoNesting) {
|
|
RunTest_NonNestableWithNoNesting(MessageLoop::TYPE_DEFAULT);
|
|
RunTest_NonNestableWithNoNesting(MessageLoop::TYPE_UI);
|
|
RunTest_NonNestableWithNoNesting(MessageLoop::TYPE_IO);
|
|
}
|
|
|
|
TEST(MessageLoopTest, NonNestableInNestedLoop) {
|
|
RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_DEFAULT);
|
|
RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_UI);
|
|
RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_IO);
|
|
}
|
|
|
|
#if defined(OS_WIN)
|
|
TEST(MessageLoopTest, Dispatcher) {
|
|
// This test requires a UI loop
|
|
RunTest_Dispatcher(MessageLoop::TYPE_UI);
|
|
}
|
|
|
|
TEST(MessageLoopTest, IOHandler) {
|
|
RunTest_IOHandler();
|
|
}
|
|
|
|
TEST(MessageLoopTest, WaitForIO) {
|
|
RunTest_WaitForIO();
|
|
}
|
|
#endif // defined(OS_WIN)
|
|
|
|
#if defined(OS_POSIX)
|
|
|
|
namespace {
|
|
|
|
class QuitDelegate : public
|
|
base::MessagePumpLibevent::Watcher {
|
|
public:
|
|
virtual void OnFileCanWriteWithoutBlocking(int fd) {
|
|
MessageLoop::current()->Quit();
|
|
}
|
|
virtual void OnFileCanReadWithoutBlocking(int fd) {
|
|
MessageLoop::current()->Quit();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
TEST(MessageLoopTest, DISABLED_FileDescriptorWatcherOutlivesMessageLoop) {
|
|
// Simulate a MessageLoop that dies before an FileDescriptorWatcher.
|
|
// This could happen when people use the Singleton pattern or atexit.
|
|
// This is disabled for now because it fails (valgrind shows
|
|
// invalid reads), and it's not clear any code relies on this...
|
|
// TODO(dkegel): enable if it turns out we rely on this
|
|
|
|
// Create a file descriptor. Doesn't need to be readable or writable,
|
|
// as we don't need to actually get any notifications.
|
|
// pipe() is just the easiest way to do it.
|
|
int pipefds[2];
|
|
int err = pipe(pipefds);
|
|
ASSERT_TRUE(err == 0);
|
|
int fd = pipefds[1];
|
|
{
|
|
// Arrange for controller to live longer than message loop.
|
|
base::MessagePumpLibevent::FileDescriptorWatcher controller;
|
|
{
|
|
MessageLoopForIO message_loop;
|
|
|
|
QuitDelegate delegate;
|
|
message_loop.WatchFileDescriptor(fd,
|
|
true, MessageLoopForIO::WATCH_WRITE, &controller, &delegate);
|
|
// and don't run the message loop, just destroy it.
|
|
}
|
|
}
|
|
close(pipefds[0]);
|
|
close(pipefds[1]);
|
|
}
|
|
|
|
TEST(MessageLoopTest, FileDescriptorWatcherDoubleStop) {
|
|
// Verify that it's ok to call StopWatchingFileDescriptor().
|
|
// (Errors only showed up in valgrind.)
|
|
int pipefds[2];
|
|
int err = pipe(pipefds);
|
|
ASSERT_TRUE(err == 0);
|
|
int fd = pipefds[1];
|
|
{
|
|
// Arrange for message loop to live longer than controller.
|
|
MessageLoopForIO message_loop;
|
|
{
|
|
base::MessagePumpLibevent::FileDescriptorWatcher controller;
|
|
|
|
QuitDelegate delegate;
|
|
message_loop.WatchFileDescriptor(fd,
|
|
true, MessageLoopForIO::WATCH_WRITE, &controller, &delegate);
|
|
controller.StopWatchingFileDescriptor();
|
|
}
|
|
}
|
|
close(pipefds[0]);
|
|
close(pipefds[1]);
|
|
}
|
|
|
|
#endif // defined(OS_LINUX)
|