0
Files
src/net/ntlm/ntlm.cc
Peter Kasting 3ff47b2d99 Use arrays more in NTLM.
This conveys sizes in the type system, which avoids the need to do
runtime conversions and ensures things are the right size.

Bug: none
Change-Id: I74307feb93e69baf4e763e935c2282c97420363b
Reviewed-on: https://chromium-review.googlesource.com/c/chromium/src/+/6068210
Code-Coverage: findit-for-me@appspot.gserviceaccount.com <findit-for-me@appspot.gserviceaccount.com>
Commit-Queue: Peter Kasting <pkasting@chromium.org>
Reviewed-by: Nidhi Jaju <nidhijaju@chromium.org>
Auto-Submit: Peter Kasting <pkasting@chromium.org>
Cr-Commit-Position: refs/heads/main@{#1392717}
2024-12-06 04:45:43 +00:00

418 lines
16 KiB
C++

// Copyright 2017 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40284755): Remove this and spanify to fix the errors.
#pragma allow_unsafe_buffers
#endif
#include "net/ntlm/ntlm.h"
#include <string.h>
#include <algorithm>
#include <array>
#include "base/check_op.h"
#include "base/containers/span.h"
#include "base/notreached.h"
#include "base/strings/utf_string_conversions.h"
#include "net/base/net_string_util.h"
#include "net/ntlm/ntlm_buffer_writer.h"
#include "net/ntlm/ntlm_constants.h"
#include "third_party/boringssl/src/include/openssl/des.h"
#include "third_party/boringssl/src/include/openssl/hmac.h"
#include "third_party/boringssl/src/include/openssl/md4.h"
#include "third_party/boringssl/src/include/openssl/md5.h"
namespace net::ntlm {
namespace {
// Takes the parsed target info in |av_pairs| and performs the following
// actions.
//
// 1) If a |TargetInfoAvId::kTimestamp| AvPair exists, |server_timestamp|
// is set to the payload.
// 2) If |is_mic_enabled| is true, the existing |TargetInfoAvId::kFlags| AvPair
// will have the |TargetInfoAvFlags::kMicPresent| bit set. If an existing
// flags AvPair does not already exist, a new one is added with the value of
// |TargetInfoAvFlags::kMicPresent|.
// 3) If |is_epa_enabled| is true, two new AvPair entries will be added to
// |av_pairs|. The first will be of type |TargetInfoAvId::kChannelBindings|
// and contains MD5(|channel_bindings|) as the payload. The second will be
// of type |TargetInfoAvId::kTargetName| and contains |spn| as a little
// endian UTF16 string.
// 4) Sets |target_info_len| to the size of |av_pairs| when serialized into
// a payload.
void UpdateTargetInfoAvPairs(bool is_mic_enabled,
bool is_epa_enabled,
const std::string& channel_bindings,
const std::string& spn,
std::vector<AvPair>* av_pairs,
uint64_t* server_timestamp,
size_t* target_info_len) {
// Do a pass to update flags and calculate current length and
// pull out the server timestamp if it is there.
*server_timestamp = UINT64_MAX;
*target_info_len = 0;
bool need_flags_added = is_mic_enabled;
for (AvPair& pair : *av_pairs) {
*target_info_len += pair.avlen + kAvPairHeaderLen;
switch (pair.avid) {
case TargetInfoAvId::kFlags:
// The parsing phase already set the payload to the |flags| field.
if (is_mic_enabled) {
pair.flags = pair.flags | TargetInfoAvFlags::kMicPresent;
}
need_flags_added = false;
break;
case TargetInfoAvId::kTimestamp:
// The parsing phase already set the payload to the |timestamp| field.
*server_timestamp = pair.timestamp;
break;
case TargetInfoAvId::kEol:
case TargetInfoAvId::kChannelBindings:
case TargetInfoAvId::kTargetName:
// The terminator, |kEol|, should already have been removed from the
// end of the list and would have been rejected if it has been inside
// the list. Additionally |kChannelBindings| and |kTargetName| pairs
// would have been rejected during the initial parsing. See
// |NtlmBufferReader::ReadTargetInfo|.
NOTREACHED();
default:
// Ignore entries we don't care about.
break;
}
}
if (need_flags_added) {
DCHECK(is_mic_enabled);
AvPair flags_pair(TargetInfoAvId::kFlags, sizeof(uint32_t));
flags_pair.flags = TargetInfoAvFlags::kMicPresent;
av_pairs->push_back(flags_pair);
*target_info_len += kAvPairHeaderLen + flags_pair.avlen;
}
if (is_epa_enabled) {
std::array<uint8_t, kChannelBindingsHashLen> channel_bindings_hash = {};
// Hash the channel bindings if they exist otherwise they remain zeros.
if (!channel_bindings.empty()) {
GenerateChannelBindingHashV2(channel_bindings, channel_bindings_hash);
}
av_pairs->emplace_back(TargetInfoAvId::kChannelBindings,
std::move(channel_bindings_hash));
// Convert the SPN to little endian unicode.
std::u16string spn16 = base::UTF8ToUTF16(spn);
NtlmBufferWriter spn_writer(spn16.length() * 2);
bool spn_writer_result =
spn_writer.WriteUtf16String(spn16) && spn_writer.IsEndOfBuffer();
DCHECK(spn_writer_result);
av_pairs->emplace_back(TargetInfoAvId::kTargetName, spn_writer.Pass());
// Add the length of the two new AV Pairs to the total length.
*target_info_len +=
(2 * kAvPairHeaderLen) + kChannelBindingsHashLen + (spn16.length() * 2);
}
// Add extra space for the terminator at the end.
*target_info_len += kAvPairHeaderLen;
}
std::vector<uint8_t> WriteUpdatedTargetInfo(const std::vector<AvPair>& av_pairs,
size_t updated_target_info_len) {
bool result = true;
NtlmBufferWriter writer(updated_target_info_len);
for (const AvPair& pair : av_pairs) {
result = writer.WriteAvPair(pair);
DCHECK(result);
}
result = writer.WriteAvPairTerminator() && writer.IsEndOfBuffer();
DCHECK(result);
return writer.Pass();
}
// Reads 7 bytes (56 bits) from |key_56| and writes them into 8 bytes of
// |key_64| with 7 bits in every byte. The least significant bits are
// undefined and a subsequent operation will set those bits with a parity bit.
// |key_56| must contain 7 bytes.
// |key_64| must contain 8 bytes.
void Splay56To64(base::span<const uint8_t, 7> key_56,
base::span<uint8_t, 8> key_64) {
key_64[0] = key_56[0];
key_64[1] = key_56[0] << 7 | key_56[1] >> 1;
key_64[2] = key_56[1] << 6 | key_56[2] >> 2;
key_64[3] = key_56[2] << 5 | key_56[3] >> 3;
key_64[4] = key_56[3] << 4 | key_56[4] >> 4;
key_64[5] = key_56[4] << 3 | key_56[5] >> 5;
key_64[6] = key_56[5] << 2 | key_56[6] >> 6;
key_64[7] = key_56[6] << 1;
}
} // namespace
void Create3DesKeysFromNtlmHash(
base::span<const uint8_t, kNtlmHashLen> ntlm_hash,
base::span<uint8_t, 24> keys) {
// Put the first 112 bits from |ntlm_hash| into the first 16 bytes of
// |keys|.
Splay56To64(ntlm_hash.first<7>(), keys.first<8>());
Splay56To64(ntlm_hash.subspan<7, 7>(), keys.subspan<8, 8>());
// Put the next 2x 7 bits in bytes 16 and 17 of |keys|, then
// the last 2 bits in byte 18, then zero pad the rest of the final key.
keys[16] = ntlm_hash[14];
keys[17] = ntlm_hash[14] << 7 | ntlm_hash[15] >> 1;
keys[18] = ntlm_hash[15] << 6;
memset(keys.data() + 19, 0, 5);
}
void GenerateNtlmHashV1(const std::u16string& password,
base::span<uint8_t, kNtlmHashLen> hash) {
size_t length = password.length() * 2;
NtlmBufferWriter writer(length);
// The writer will handle the big endian case if necessary.
bool result = writer.WriteUtf16String(password) && writer.IsEndOfBuffer();
DCHECK(result);
MD4(writer.GetBuffer().data(), writer.GetLength(), hash.data());
}
void GenerateResponseDesl(base::span<const uint8_t, kNtlmHashLen> hash,
base::span<const uint8_t, kChallengeLen> challenge,
base::span<uint8_t, kResponseLenV1> response) {
constexpr size_t block_count = 3;
constexpr size_t block_size = sizeof(DES_cblock);
static_assert(kChallengeLen == block_size,
"kChallengeLen must equal block_size");
static_assert(kResponseLenV1 == block_count * block_size,
"kResponseLenV1 must equal block_count * block_size");
const DES_cblock* challenge_block =
reinterpret_cast<const DES_cblock*>(challenge.data());
uint8_t keys[block_count * block_size];
// Map the NTLM hash to three 8 byte DES keys, with 7 bits of the key in each
// byte and the least significant bit set with odd parity. Then encrypt the
// 8 byte challenge with each of the three keys. This produces three 8 byte
// encrypted blocks into |response|.
Create3DesKeysFromNtlmHash(hash, keys);
for (size_t ix = 0; ix < block_count * block_size; ix += block_size) {
DES_cblock* key_block = reinterpret_cast<DES_cblock*>(keys + ix);
DES_cblock* response_block =
reinterpret_cast<DES_cblock*>(response.data() + ix);
DES_key_schedule key_schedule;
DES_set_odd_parity(key_block);
DES_set_key(key_block, &key_schedule);
DES_ecb_encrypt(challenge_block, response_block, &key_schedule,
DES_ENCRYPT);
}
}
void GenerateNtlmResponseV1(
const std::u16string& password,
base::span<const uint8_t, kChallengeLen> server_challenge,
base::span<uint8_t, kResponseLenV1> ntlm_response) {
uint8_t ntlm_hash[kNtlmHashLen];
GenerateNtlmHashV1(password, ntlm_hash);
GenerateResponseDesl(ntlm_hash, server_challenge, ntlm_response);
}
void GenerateResponsesV1(
const std::u16string& password,
base::span<const uint8_t, kChallengeLen> server_challenge,
base::span<uint8_t, kResponseLenV1> lm_response,
base::span<uint8_t, kResponseLenV1> ntlm_response) {
GenerateNtlmResponseV1(password, server_challenge, ntlm_response);
// In NTLM v1 (with LMv1 disabled), the lm_response and ntlm_response are the
// same. So just copy the ntlm_response into the lm_response.
memcpy(lm_response.data(), ntlm_response.data(), kResponseLenV1);
}
void GenerateLMResponseV1WithSessionSecurity(
base::span<const uint8_t, kChallengeLen> client_challenge,
base::span<uint8_t, kResponseLenV1> lm_response) {
// In NTLM v1 with Session Security (aka NTLM2) the lm_response is 8 bytes of
// client challenge and 16 bytes of zeros. (See 3.3.1)
memcpy(lm_response.data(), client_challenge.data(), kChallengeLen);
memset(lm_response.data() + kChallengeLen, 0, kResponseLenV1 - kChallengeLen);
}
void GenerateSessionHashV1WithSessionSecurity(
base::span<const uint8_t, kChallengeLen> server_challenge,
base::span<const uint8_t, kChallengeLen> client_challenge,
base::span<uint8_t, kNtlmHashLen> session_hash) {
MD5_CTX ctx;
MD5_Init(&ctx);
MD5_Update(&ctx, server_challenge.data(), kChallengeLen);
MD5_Update(&ctx, client_challenge.data(), kChallengeLen);
MD5_Final(session_hash.data(), &ctx);
}
void GenerateNtlmResponseV1WithSessionSecurity(
const std::u16string& password,
base::span<const uint8_t, kChallengeLen> server_challenge,
base::span<const uint8_t, kChallengeLen> client_challenge,
base::span<uint8_t, kResponseLenV1> ntlm_response) {
// Generate the NTLMv1 Hash.
uint8_t ntlm_hash[kNtlmHashLen];
GenerateNtlmHashV1(password, ntlm_hash);
// Generate the NTLMv1 Session Hash.
uint8_t session_hash[kNtlmHashLen];
GenerateSessionHashV1WithSessionSecurity(server_challenge, client_challenge,
session_hash);
GenerateResponseDesl(ntlm_hash,
base::span(session_hash).first<kChallengeLen>(),
ntlm_response);
}
void GenerateResponsesV1WithSessionSecurity(
const std::u16string& password,
base::span<const uint8_t, kChallengeLen> server_challenge,
base::span<const uint8_t, kChallengeLen> client_challenge,
base::span<uint8_t, kResponseLenV1> lm_response,
base::span<uint8_t, kResponseLenV1> ntlm_response) {
GenerateLMResponseV1WithSessionSecurity(client_challenge, lm_response);
GenerateNtlmResponseV1WithSessionSecurity(password, server_challenge,
client_challenge, ntlm_response);
}
void GenerateNtlmHashV2(const std::u16string& domain,
const std::u16string& username,
const std::u16string& password,
base::span<uint8_t, kNtlmHashLen> v2_hash) {
// NOTE: According to [MS-NLMP] Section 3.3.2 only the username and not the
// domain is uppercased.
// TODO(crbug.com/40674019): Using a locale-sensitive upper casing
// algorithm is problematic. A more predictable approach would be to only
// uppercase ASCII characters, so the hash does not change depending on the
// user's locale.
std::u16string upper_username;
bool result = ToUpperUsingLocale(username, &upper_username);
DCHECK(result);
uint8_t v1_hash[kNtlmHashLen];
GenerateNtlmHashV1(password, v1_hash);
NtlmBufferWriter input_writer((upper_username.length() + domain.length()) *
2);
bool writer_result = input_writer.WriteUtf16String(upper_username) &&
input_writer.WriteUtf16String(domain) &&
input_writer.IsEndOfBuffer();
DCHECK(writer_result);
unsigned int outlen = kNtlmHashLen;
uint8_t* out_hash =
HMAC(EVP_md5(), v1_hash, sizeof(v1_hash), input_writer.GetBuffer().data(),
input_writer.GetLength(), v2_hash.data(), &outlen);
DCHECK_EQ(v2_hash.data(), out_hash);
DCHECK_EQ(sizeof(v1_hash), outlen);
}
std::array<uint8_t, kProofInputLenV2> GenerateProofInputV2(
uint64_t timestamp,
base::span<const uint8_t, kChallengeLen> client_challenge) {
NtlmBufferWriter writer(kProofInputLenV2);
bool result = writer.WriteUInt16(kProofInputVersionV2) &&
writer.WriteZeros(6) && writer.WriteUInt64(timestamp) &&
writer.WriteBytes(client_challenge) && writer.WriteZeros(4) &&
writer.IsEndOfBuffer();
DCHECK(result);
std::array<uint8_t, kProofInputLenV2> ret;
std::ranges::copy(writer.Pass(), ret.begin());
return ret;
}
void GenerateNtlmProofV2(
base::span<const uint8_t, kNtlmHashLen> v2_hash,
base::span<const uint8_t, kChallengeLen> server_challenge,
base::span<const uint8_t, kProofInputLenV2> v2_input,
base::span<const uint8_t> target_info,
base::span<uint8_t, kNtlmProofLenV2> v2_proof) {
bssl::ScopedHMAC_CTX ctx;
HMAC_Init_ex(ctx.get(), v2_hash.data(), kNtlmHashLen, EVP_md5(), nullptr);
DCHECK_EQ(kNtlmProofLenV2, HMAC_size(ctx.get()));
HMAC_Update(ctx.get(), server_challenge.data(), kChallengeLen);
HMAC_Update(ctx.get(), v2_input.data(), kProofInputLenV2);
HMAC_Update(ctx.get(), target_info.data(), target_info.size());
const uint32_t zero = 0;
HMAC_Update(ctx.get(), reinterpret_cast<const uint8_t*>(&zero),
sizeof(uint32_t));
HMAC_Final(ctx.get(), v2_proof.data(), nullptr);
}
void GenerateSessionBaseKeyV2(
base::span<const uint8_t, kNtlmHashLen> v2_hash,
base::span<const uint8_t, kNtlmProofLenV2> v2_proof,
base::span<uint8_t, kSessionKeyLenV2> session_key) {
unsigned int outlen = kSessionKeyLenV2;
uint8_t* result =
HMAC(EVP_md5(), v2_hash.data(), kNtlmHashLen, v2_proof.data(),
kNtlmProofLenV2, session_key.data(), &outlen);
DCHECK_EQ(session_key.data(), result);
DCHECK_EQ(kSessionKeyLenV2, outlen);
}
void GenerateChannelBindingHashV2(
const std::string& channel_bindings,
base::span<uint8_t, kNtlmHashLen> channel_bindings_hash) {
NtlmBufferWriter writer(kEpaUnhashedStructHeaderLen);
bool result = writer.WriteZeros(16) &&
writer.WriteUInt32(channel_bindings.length()) &&
writer.IsEndOfBuffer();
DCHECK(result);
MD5_CTX ctx;
MD5_Init(&ctx);
MD5_Update(&ctx, writer.GetBuffer().data(), writer.GetBuffer().size());
MD5_Update(&ctx, channel_bindings.data(), channel_bindings.size());
MD5_Final(channel_bindings_hash.data(), &ctx);
}
void GenerateMicV2(base::span<const uint8_t, kSessionKeyLenV2> session_key,
base::span<const uint8_t> negotiate_msg,
base::span<const uint8_t> challenge_msg,
base::span<const uint8_t> authenticate_msg,
base::span<uint8_t, kMicLenV2> mic) {
bssl::ScopedHMAC_CTX ctx;
HMAC_Init_ex(ctx.get(), session_key.data(), kSessionKeyLenV2, EVP_md5(),
nullptr);
DCHECK_EQ(kMicLenV2, HMAC_size(ctx.get()));
HMAC_Update(ctx.get(), negotiate_msg.data(), negotiate_msg.size());
HMAC_Update(ctx.get(), challenge_msg.data(), challenge_msg.size());
HMAC_Update(ctx.get(), authenticate_msg.data(), authenticate_msg.size());
HMAC_Final(ctx.get(), mic.data(), nullptr);
}
NET_EXPORT_PRIVATE std::vector<uint8_t> GenerateUpdatedTargetInfo(
bool is_mic_enabled,
bool is_epa_enabled,
const std::string& channel_bindings,
const std::string& spn,
const std::vector<AvPair>& av_pairs,
uint64_t* server_timestamp) {
size_t updated_target_info_len = 0;
std::vector<AvPair> updated_av_pairs(av_pairs);
UpdateTargetInfoAvPairs(is_mic_enabled, is_epa_enabled, channel_bindings, spn,
&updated_av_pairs, server_timestamp,
&updated_target_info_len);
return WriteUpdatedTargetInfo(updated_av_pairs, updated_target_info_len);
}
} // namespace net::ntlm