
The pointer-based crypto::RandBytes() overload can't be removed until nearby stops using it: https://crrev.com/c/5529443 will do this. The pointer-based base::RandBytes() will be removed next. Bug: 40284755 Change-Id: I72c79e23e120f988b091dd2576de180a1c60d2b7 Reviewed-on: https://chromium-review.googlesource.com/c/chromium/src/+/5514816 Commit-Queue: danakj <danakj@chromium.org> Reviewed-by: Daniel Cheng <dcheng@chromium.org> Owners-Override: Daniel Cheng <dcheng@chromium.org> Cr-Commit-Position: refs/heads/main@{#1298850}
442 lines
15 KiB
C++
442 lines
15 KiB
C++
// Copyright 2011 The Chromium Authors
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#ifdef UNSAFE_BUFFERS_BUILD
|
|
// TODO(crbug.com/40284755): Remove this and spanify to fix the errors.
|
|
#pragma allow_unsafe_buffers
|
|
#endif
|
|
|
|
#include "base/rand_util.h"
|
|
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <limits>
|
|
#include <memory>
|
|
#include <vector>
|
|
|
|
#include "base/containers/span.h"
|
|
#include "base/logging.h"
|
|
#include "base/time/time.h"
|
|
#include "testing/gtest/include/gtest/gtest.h"
|
|
|
|
namespace base {
|
|
|
|
namespace {
|
|
|
|
const int kIntMin = std::numeric_limits<int>::min();
|
|
const int kIntMax = std::numeric_limits<int>::max();
|
|
|
|
} // namespace
|
|
|
|
TEST(RandUtilTest, RandInt) {
|
|
EXPECT_EQ(base::RandInt(0, 0), 0);
|
|
EXPECT_EQ(base::RandInt(kIntMin, kIntMin), kIntMin);
|
|
EXPECT_EQ(base::RandInt(kIntMax, kIntMax), kIntMax);
|
|
|
|
// Check that the DCHECKS in RandInt() don't fire due to internal overflow.
|
|
// There was a 50% chance of that happening, so calling it 40 times means
|
|
// the chances of this passing by accident are tiny (9e-13).
|
|
for (int i = 0; i < 40; ++i)
|
|
base::RandInt(kIntMin, kIntMax);
|
|
}
|
|
|
|
TEST(RandUtilTest, RandDouble) {
|
|
// Force 64-bit precision, making sure we're not in a 80-bit FPU register.
|
|
volatile double number = base::RandDouble();
|
|
EXPECT_GT(1.0, number);
|
|
EXPECT_LE(0.0, number);
|
|
}
|
|
|
|
TEST(RandUtilTest, RandFloat) {
|
|
// Force 32-bit precision, making sure we're not in an 80-bit FPU register.
|
|
volatile float number = base::RandFloat();
|
|
EXPECT_GT(1.f, number);
|
|
EXPECT_LE(0.f, number);
|
|
}
|
|
|
|
TEST(RandUtilTest, RandTimeDelta) {
|
|
{
|
|
const auto delta =
|
|
base::RandTimeDelta(-base::Seconds(2), -base::Seconds(1));
|
|
EXPECT_GE(delta, -base::Seconds(2));
|
|
EXPECT_LT(delta, -base::Seconds(1));
|
|
}
|
|
|
|
{
|
|
const auto delta = base::RandTimeDelta(-base::Seconds(2), base::Seconds(2));
|
|
EXPECT_GE(delta, -base::Seconds(2));
|
|
EXPECT_LT(delta, base::Seconds(2));
|
|
}
|
|
|
|
{
|
|
const auto delta = base::RandTimeDelta(base::Seconds(1), base::Seconds(2));
|
|
EXPECT_GE(delta, base::Seconds(1));
|
|
EXPECT_LT(delta, base::Seconds(2));
|
|
}
|
|
}
|
|
|
|
TEST(RandUtilTest, RandTimeDeltaUpTo) {
|
|
const auto delta = base::RandTimeDeltaUpTo(base::Seconds(2));
|
|
EXPECT_FALSE(delta.is_negative());
|
|
EXPECT_LT(delta, base::Seconds(2));
|
|
}
|
|
|
|
TEST(RandUtilTest, BitsToOpenEndedUnitInterval) {
|
|
// Force 64-bit precision, making sure we're not in an 80-bit FPU register.
|
|
volatile double all_zeros = BitsToOpenEndedUnitInterval(0x0);
|
|
EXPECT_EQ(0.0, all_zeros);
|
|
|
|
// Force 64-bit precision, making sure we're not in an 80-bit FPU register.
|
|
volatile double smallest_nonzero = BitsToOpenEndedUnitInterval(0x1);
|
|
EXPECT_LT(0.0, smallest_nonzero);
|
|
|
|
for (uint64_t i = 0x2; i < 0x10; ++i) {
|
|
// Force 64-bit precision, making sure we're not in an 80-bit FPU register.
|
|
volatile double number = BitsToOpenEndedUnitInterval(i);
|
|
EXPECT_EQ(i * smallest_nonzero, number);
|
|
}
|
|
|
|
// Force 64-bit precision, making sure we're not in an 80-bit FPU register.
|
|
volatile double all_ones = BitsToOpenEndedUnitInterval(UINT64_MAX);
|
|
EXPECT_GT(1.0, all_ones);
|
|
}
|
|
|
|
TEST(RandUtilTest, BitsToOpenEndedUnitIntervalF) {
|
|
// Force 32-bit precision, making sure we're not in an 80-bit FPU register.
|
|
volatile float all_zeros = BitsToOpenEndedUnitIntervalF(0x0);
|
|
EXPECT_EQ(0.f, all_zeros);
|
|
|
|
// Force 32-bit precision, making sure we're not in an 80-bit FPU register.
|
|
volatile float smallest_nonzero = BitsToOpenEndedUnitIntervalF(0x1);
|
|
EXPECT_LT(0.f, smallest_nonzero);
|
|
|
|
for (uint64_t i = 0x2; i < 0x10; ++i) {
|
|
// Force 32-bit precision, making sure we're not in an 80-bit FPU register.
|
|
volatile float number = BitsToOpenEndedUnitIntervalF(i);
|
|
EXPECT_EQ(i * smallest_nonzero, number);
|
|
}
|
|
|
|
// Force 32-bit precision, making sure we're not in an 80-bit FPU register.
|
|
volatile float all_ones = BitsToOpenEndedUnitIntervalF(UINT64_MAX);
|
|
EXPECT_GT(1.f, all_ones);
|
|
}
|
|
|
|
TEST(RandUtilTest, RandBytes) {
|
|
const size_t buffer_size = 50;
|
|
uint8_t buffer[buffer_size];
|
|
memset(buffer, 0, buffer_size);
|
|
base::RandBytes(buffer);
|
|
std::sort(buffer, buffer + buffer_size);
|
|
// Probability of occurrence of less than 25 unique bytes in 50 random bytes
|
|
// is below 10^-25.
|
|
EXPECT_GT(std::unique(buffer, buffer + buffer_size) - buffer, 25);
|
|
}
|
|
|
|
// Verify that calling base::RandBytes with an empty buffer doesn't fail.
|
|
TEST(RandUtilTest, RandBytes0) {
|
|
base::RandBytes(span<uint8_t>());
|
|
}
|
|
|
|
TEST(RandUtilTest, RandBytesAsVector) {
|
|
std::vector<uint8_t> random_vec = base::RandBytesAsVector(0);
|
|
EXPECT_TRUE(random_vec.empty());
|
|
random_vec = base::RandBytesAsVector(1);
|
|
EXPECT_EQ(1U, random_vec.size());
|
|
random_vec = base::RandBytesAsVector(145);
|
|
EXPECT_EQ(145U, random_vec.size());
|
|
char accumulator = 0;
|
|
for (auto i : random_vec) {
|
|
accumulator |= i;
|
|
}
|
|
// In theory this test can fail, but it won't before the universe dies of
|
|
// heat death.
|
|
EXPECT_NE(0, accumulator);
|
|
}
|
|
|
|
TEST(RandUtilTest, RandBytesAsString) {
|
|
std::string random_string = base::RandBytesAsString(1);
|
|
EXPECT_EQ(1U, random_string.size());
|
|
random_string = base::RandBytesAsString(145);
|
|
EXPECT_EQ(145U, random_string.size());
|
|
char accumulator = 0;
|
|
for (auto i : random_string)
|
|
accumulator |= i;
|
|
// In theory this test can fail, but it won't before the universe dies of
|
|
// heat death.
|
|
EXPECT_NE(0, accumulator);
|
|
}
|
|
|
|
// Make sure that it is still appropriate to use RandGenerator in conjunction
|
|
// with std::random_shuffle().
|
|
TEST(RandUtilTest, RandGeneratorForRandomShuffle) {
|
|
EXPECT_EQ(base::RandGenerator(1), 0U);
|
|
EXPECT_LE(std::numeric_limits<ptrdiff_t>::max(),
|
|
std::numeric_limits<int64_t>::max());
|
|
}
|
|
|
|
TEST(RandUtilTest, RandGeneratorIsUniform) {
|
|
// Verify that RandGenerator has a uniform distribution. This is a
|
|
// regression test that consistently failed when RandGenerator was
|
|
// implemented this way:
|
|
//
|
|
// return base::RandUint64() % max;
|
|
//
|
|
// A degenerate case for such an implementation is e.g. a top of
|
|
// range that is 2/3rds of the way to MAX_UINT64, in which case the
|
|
// bottom half of the range would be twice as likely to occur as the
|
|
// top half. A bit of calculus care of jar@ shows that the largest
|
|
// measurable delta is when the top of the range is 3/4ths of the
|
|
// way, so that's what we use in the test.
|
|
constexpr uint64_t kTopOfRange =
|
|
(std::numeric_limits<uint64_t>::max() / 4ULL) * 3ULL;
|
|
constexpr double kExpectedAverage = static_cast<double>(kTopOfRange / 2);
|
|
constexpr double kAllowedVariance = kExpectedAverage / 50.0; // +/- 2%
|
|
constexpr int kMinAttempts = 1000;
|
|
constexpr int kMaxAttempts = 1000000;
|
|
|
|
double cumulative_average = 0.0;
|
|
int count = 0;
|
|
while (count < kMaxAttempts) {
|
|
uint64_t value = base::RandGenerator(kTopOfRange);
|
|
cumulative_average = (count * cumulative_average + value) / (count + 1);
|
|
|
|
// Don't quit too quickly for things to start converging, or we may have
|
|
// a false positive.
|
|
if (count > kMinAttempts &&
|
|
kExpectedAverage - kAllowedVariance < cumulative_average &&
|
|
cumulative_average < kExpectedAverage + kAllowedVariance) {
|
|
break;
|
|
}
|
|
|
|
++count;
|
|
}
|
|
|
|
ASSERT_LT(count, kMaxAttempts) << "Expected average was " << kExpectedAverage
|
|
<< ", average ended at " << cumulative_average;
|
|
}
|
|
|
|
TEST(RandUtilTest, RandUint64ProducesBothValuesOfAllBits) {
|
|
// This tests to see that our underlying random generator is good
|
|
// enough, for some value of good enough.
|
|
uint64_t kAllZeros = 0ULL;
|
|
uint64_t kAllOnes = ~kAllZeros;
|
|
uint64_t found_ones = kAllZeros;
|
|
uint64_t found_zeros = kAllOnes;
|
|
|
|
for (size_t i = 0; i < 1000; ++i) {
|
|
uint64_t value = base::RandUint64();
|
|
found_ones |= value;
|
|
found_zeros &= value;
|
|
|
|
if (found_zeros == kAllZeros && found_ones == kAllOnes)
|
|
return;
|
|
}
|
|
|
|
FAIL() << "Didn't achieve all bit values in maximum number of tries.";
|
|
}
|
|
|
|
TEST(RandUtilTest, RandBytesLonger) {
|
|
// Fuchsia can only retrieve 256 bytes of entropy at a time, so make sure we
|
|
// handle longer requests than that.
|
|
std::string random_string0 = base::RandBytesAsString(255);
|
|
EXPECT_EQ(255u, random_string0.size());
|
|
std::string random_string1 = base::RandBytesAsString(1023);
|
|
EXPECT_EQ(1023u, random_string1.size());
|
|
std::string random_string2 = base::RandBytesAsString(4097);
|
|
EXPECT_EQ(4097u, random_string2.size());
|
|
}
|
|
|
|
// Benchmark test for RandBytes(). Disabled since it's intentionally slow and
|
|
// does not test anything that isn't already tested by the existing RandBytes()
|
|
// tests.
|
|
TEST(RandUtilTest, DISABLED_RandBytesPerf) {
|
|
// Benchmark the performance of |kTestIterations| of RandBytes() using a
|
|
// buffer size of |kTestBufferSize|.
|
|
const int kTestIterations = 10;
|
|
const size_t kTestBufferSize = 1 * 1024 * 1024;
|
|
|
|
std::array<uint8_t, kTestBufferSize> buffer;
|
|
const base::TimeTicks now = base::TimeTicks::Now();
|
|
for (int i = 0; i < kTestIterations; ++i) {
|
|
base::RandBytes(buffer);
|
|
}
|
|
const base::TimeTicks end = base::TimeTicks::Now();
|
|
|
|
LOG(INFO) << "RandBytes(" << kTestBufferSize
|
|
<< ") took: " << (end - now).InMicroseconds() << "µs";
|
|
}
|
|
|
|
TEST(RandUtilTest, InsecureRandomGeneratorProducesBothValuesOfAllBits) {
|
|
// This tests to see that our underlying random generator is good
|
|
// enough, for some value of good enough.
|
|
uint64_t kAllZeros = 0ULL;
|
|
uint64_t kAllOnes = ~kAllZeros;
|
|
uint64_t found_ones = kAllZeros;
|
|
uint64_t found_zeros = kAllOnes;
|
|
|
|
InsecureRandomGenerator generator;
|
|
|
|
for (size_t i = 0; i < 1000; ++i) {
|
|
uint64_t value = generator.RandUint64();
|
|
found_ones |= value;
|
|
found_zeros &= value;
|
|
|
|
if (found_zeros == kAllZeros && found_ones == kAllOnes)
|
|
return;
|
|
}
|
|
|
|
FAIL() << "Didn't achieve all bit values in maximum number of tries.";
|
|
}
|
|
|
|
namespace {
|
|
|
|
constexpr double kXp1Percent = -2.33;
|
|
constexpr double kXp99Percent = 2.33;
|
|
|
|
double ChiSquaredCriticalValue(double nu, double x_p) {
|
|
// From "The Art Of Computer Programming" (TAOCP), Volume 2, Section 3.3.1,
|
|
// Table 1. This is the asymptotic value for nu > 30, up to O(1 / sqrt(nu)).
|
|
return nu + sqrt(2. * nu) * x_p + 2. / 3. * (x_p * x_p) - 2. / 3.;
|
|
}
|
|
|
|
int ExtractBits(uint64_t value, int from_bit, int num_bits) {
|
|
return (value >> from_bit) & ((1 << num_bits) - 1);
|
|
}
|
|
|
|
// Performs a Chi-Squared test on a subset of |num_bits| extracted starting from
|
|
// |from_bit| in the generated value.
|
|
//
|
|
// See TAOCP, Volume 2, Section 3.3.1, and
|
|
// https://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test for details.
|
|
//
|
|
// This is only one of the many, many random number generator test we could do,
|
|
// but they are cumbersome, as they are typically very slow, and expected to
|
|
// fail from time to time, due to their probabilistic nature.
|
|
//
|
|
// The generator we use has however been vetted with the BigCrush test suite
|
|
// from Marsaglia, so this should suffice as a smoke test that our
|
|
// implementation is wrong.
|
|
bool ChiSquaredTest(InsecureRandomGenerator& gen,
|
|
size_t n,
|
|
int from_bit,
|
|
int num_bits) {
|
|
const int range = 1 << num_bits;
|
|
CHECK_EQ(static_cast<int>(n % range), 0) << "Makes computations simpler";
|
|
std::vector<size_t> samples(range, 0);
|
|
|
|
// Count how many samples pf each value are found. All buckets should be
|
|
// almost equal if the generator is suitably uniformly random.
|
|
for (size_t i = 0; i < n; i++) {
|
|
int sample = ExtractBits(gen.RandUint64(), from_bit, num_bits);
|
|
samples[sample] += 1;
|
|
}
|
|
|
|
// Compute the Chi-Squared statistic, which is:
|
|
// \Sum_{k=0}^{range-1} \frac{(count - expected)^2}{expected}
|
|
double chi_squared = 0.;
|
|
double expected_count = n / range;
|
|
for (size_t sample_count : samples) {
|
|
double deviation = sample_count - expected_count;
|
|
chi_squared += (deviation * deviation) / expected_count;
|
|
}
|
|
|
|
// The generator should produce numbers that are not too far of (chi_squared
|
|
// lower than a given quantile), but not too close to the ideal distribution
|
|
// either (chi_squared is too low).
|
|
//
|
|
// See The Art Of Computer Programming, Volume 2, Section 3.3.1 for details.
|
|
return chi_squared > ChiSquaredCriticalValue(range - 1, kXp1Percent) &&
|
|
chi_squared < ChiSquaredCriticalValue(range - 1, kXp99Percent);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
TEST(RandUtilTest, InsecureRandomGeneratorChiSquared) {
|
|
constexpr int kIterations = 50;
|
|
|
|
// Specifically test the low bits, which are usually weaker in random number
|
|
// generators. We don't use them for the 32 bit number generation, but let's
|
|
// make sure they are still suitable.
|
|
for (int start_bit : {1, 2, 3, 8, 12, 20, 32, 48, 54}) {
|
|
int pass_count = 0;
|
|
for (int i = 0; i < kIterations; i++) {
|
|
size_t samples = 1 << 16;
|
|
InsecureRandomGenerator gen;
|
|
// Fix the seed to make the test non-flaky.
|
|
gen.ReseedForTesting(kIterations + 1);
|
|
bool pass = ChiSquaredTest(gen, samples, start_bit, 8);
|
|
pass_count += pass;
|
|
}
|
|
|
|
// We exclude 1% on each side, so we expect 98% of tests to pass, meaning 98
|
|
// * kIterations / 100. However this is asymptotic, so add a bit of leeway.
|
|
int expected_pass_count = (kIterations * 98) / 100;
|
|
EXPECT_GE(pass_count, expected_pass_count - ((kIterations * 2) / 100))
|
|
<< "For start_bit = " << start_bit;
|
|
}
|
|
}
|
|
|
|
TEST(RandUtilTest, InsecureRandomGeneratorRandDouble) {
|
|
InsecureRandomGenerator gen;
|
|
|
|
for (int i = 0; i < 1000; i++) {
|
|
volatile double x = gen.RandDouble();
|
|
EXPECT_GE(x, 0.);
|
|
EXPECT_LT(x, 1.);
|
|
}
|
|
}
|
|
|
|
TEST(RandUtilTest, MetricsSubSampler) {
|
|
MetricsSubSampler sub_sampler;
|
|
int true_count = 0;
|
|
int false_count = 0;
|
|
for (int i = 0; i < 1000; ++i) {
|
|
if (sub_sampler.ShouldSample(0.5)) {
|
|
++true_count;
|
|
} else {
|
|
++false_count;
|
|
}
|
|
}
|
|
|
|
// Validate that during normal operation MetricsSubSampler::ShouldSample()
|
|
// does not always give the same result. It's technically possible to fail
|
|
// this test during normal operation but if the sampling is realistic it
|
|
// should happen about once every 2^999 times (the likelihood of the [1,999]
|
|
// results being the same as [0], which can be either). This should not make
|
|
// this test flaky in the eyes of automated testing.
|
|
EXPECT_GT(true_count, 0);
|
|
EXPECT_GT(false_count, 0);
|
|
}
|
|
|
|
TEST(RandUtilTest, MetricsSubSamplerTestingSupport) {
|
|
MetricsSubSampler sub_sampler;
|
|
|
|
// ScopedAlwaysSampleForTesting makes ShouldSample() return true with
|
|
// any probability.
|
|
{
|
|
MetricsSubSampler::ScopedAlwaysSampleForTesting always_sample;
|
|
for (int i = 0; i < 100; ++i) {
|
|
EXPECT_TRUE(sub_sampler.ShouldSample(0));
|
|
EXPECT_TRUE(sub_sampler.ShouldSample(0.5));
|
|
EXPECT_TRUE(sub_sampler.ShouldSample(1));
|
|
}
|
|
}
|
|
|
|
// ScopedNeverSampleForTesting makes ShouldSample() return true with
|
|
// any probability.
|
|
{
|
|
MetricsSubSampler::ScopedNeverSampleForTesting always_sample;
|
|
for (int i = 0; i < 100; ++i) {
|
|
EXPECT_FALSE(sub_sampler.ShouldSample(0));
|
|
EXPECT_FALSE(sub_sampler.ShouldSample(0.5));
|
|
EXPECT_FALSE(sub_sampler.ShouldSample(1));
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace base
|