
From the Intel Software Developer's Manual 2A: Initial EAX Value: 7 ECX Bit 03: PKU, supports protection keys for user-mode pages if 1. LOW_COVERAGE_REASON=Added a test, but it's hardware specific Change-Id: I3d83e00dc66e04d4b5d0924fd11eeb03ce2b4972 Bug: v8:13355 Reviewed-on: https://chromium-review.googlesource.com/c/chromium/src/+/3934852 Reviewed-by: Daniel Cheng <dcheng@chromium.org> Commit-Queue: Stephen Röttger <sroettger@google.com> Cr-Commit-Position: refs/heads/main@{#1056215}
221 lines
6.8 KiB
C++
221 lines
6.8 KiB
C++
// Copyright 2012 The Chromium Authors
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "base/cpu.h"
|
|
#include "base/containers/contains.h"
|
|
#include "base/logging.h"
|
|
#include "base/strings/string_util.h"
|
|
#include "build/build_config.h"
|
|
#include "testing/gtest/include/gtest/gtest.h"
|
|
|
|
// Tests whether we can run extended instructions represented by the CPU
|
|
// information. This test actually executes some extended instructions (such as
|
|
// MMX, SSE, etc.) supported by the CPU and sees we can run them without
|
|
// "undefined instruction" exceptions. That is, this test succeeds when this
|
|
// test finishes without a crash.
|
|
TEST(CPU, RunExtendedInstructions) {
|
|
// Retrieve the CPU information.
|
|
base::CPU cpu;
|
|
#if defined(ARCH_CPU_X86_FAMILY)
|
|
|
|
ASSERT_TRUE(cpu.has_mmx());
|
|
ASSERT_TRUE(cpu.has_sse());
|
|
ASSERT_TRUE(cpu.has_sse2());
|
|
ASSERT_TRUE(cpu.has_sse3());
|
|
|
|
// GCC and clang instruction test.
|
|
#if defined(COMPILER_GCC)
|
|
// Execute an MMX instruction.
|
|
__asm__ __volatile__("emms\n" : : : "mm0");
|
|
|
|
// Execute an SSE instruction.
|
|
__asm__ __volatile__("xorps %%xmm0, %%xmm0\n" : : : "xmm0");
|
|
|
|
// Execute an SSE 2 instruction.
|
|
__asm__ __volatile__("psrldq $0, %%xmm0\n" : : : "xmm0");
|
|
|
|
// Execute an SSE 3 instruction.
|
|
__asm__ __volatile__("addsubpd %%xmm0, %%xmm0\n" : : : "xmm0");
|
|
|
|
if (cpu.has_ssse3()) {
|
|
// Execute a Supplimental SSE 3 instruction.
|
|
__asm__ __volatile__("psignb %%xmm0, %%xmm0\n" : : : "xmm0");
|
|
}
|
|
|
|
if (cpu.has_sse41()) {
|
|
// Execute an SSE 4.1 instruction.
|
|
__asm__ __volatile__("pmuldq %%xmm0, %%xmm0\n" : : : "xmm0");
|
|
}
|
|
|
|
if (cpu.has_sse42()) {
|
|
// Execute an SSE 4.2 instruction.
|
|
__asm__ __volatile__("crc32 %%eax, %%eax\n" : : : "eax");
|
|
}
|
|
|
|
if (cpu.has_popcnt()) {
|
|
// Execute a POPCNT instruction.
|
|
__asm__ __volatile__("popcnt %%eax, %%eax\n" : : : "eax");
|
|
}
|
|
|
|
if (cpu.has_avx()) {
|
|
// Execute an AVX instruction.
|
|
__asm__ __volatile__("vzeroupper\n" : : : "xmm0");
|
|
}
|
|
|
|
if (cpu.has_fma3()) {
|
|
// Execute a FMA3 instruction.
|
|
__asm__ __volatile__("vfmadd132ps %%xmm0, %%xmm0, %%xmm0\n" : : : "xmm0");
|
|
}
|
|
|
|
if (cpu.has_avx2()) {
|
|
// Execute an AVX 2 instruction.
|
|
__asm__ __volatile__("vpunpcklbw %%ymm0, %%ymm0, %%ymm0\n" : : : "xmm0");
|
|
}
|
|
|
|
if (cpu.has_pku()) {
|
|
// rdpkru
|
|
uint32_t pkru;
|
|
__asm__ __volatile__(".byte 0x0f,0x01,0xee\n"
|
|
: "=a"(pkru)
|
|
: "c"(0), "d"(0));
|
|
}
|
|
// Visual C 32 bit and ClangCL 32/64 bit test.
|
|
#elif defined(COMPILER_MSVC) && (defined(ARCH_CPU_32_BITS) || \
|
|
(defined(ARCH_CPU_64_BITS) && defined(__clang__)))
|
|
|
|
// Execute an MMX instruction.
|
|
__asm emms;
|
|
|
|
// Execute an SSE instruction.
|
|
__asm xorps xmm0, xmm0;
|
|
|
|
// Execute an SSE 2 instruction.
|
|
__asm psrldq xmm0, 0;
|
|
|
|
// Execute an SSE 3 instruction.
|
|
__asm addsubpd xmm0, xmm0;
|
|
|
|
if (cpu.has_ssse3()) {
|
|
// Execute a Supplimental SSE 3 instruction.
|
|
__asm psignb xmm0, xmm0;
|
|
}
|
|
|
|
if (cpu.has_sse41()) {
|
|
// Execute an SSE 4.1 instruction.
|
|
__asm pmuldq xmm0, xmm0;
|
|
}
|
|
|
|
if (cpu.has_sse42()) {
|
|
// Execute an SSE 4.2 instruction.
|
|
__asm crc32 eax, eax;
|
|
}
|
|
|
|
if (cpu.has_popcnt()) {
|
|
// Execute a POPCNT instruction.
|
|
__asm popcnt eax, eax;
|
|
}
|
|
|
|
if (cpu.has_avx()) {
|
|
// Execute an AVX instruction.
|
|
__asm vzeroupper;
|
|
}
|
|
|
|
if (cpu.has_fma3()) {
|
|
// Execute an AVX instruction.
|
|
__asm vfmadd132ps xmm0, xmm0, xmm0;
|
|
}
|
|
|
|
if (cpu.has_avx2()) {
|
|
// Execute an AVX 2 instruction.
|
|
__asm vpunpcklbw ymm0, ymm0, ymm0
|
|
}
|
|
#endif // defined(COMPILER_GCC)
|
|
#endif // defined(ARCH_CPU_X86_FAMILY)
|
|
|
|
#if defined(ARCH_CPU_ARM64)
|
|
// Check that the CPU is correctly reporting support for the Armv8.5-A memory
|
|
// tagging extension. The new MTE instructions aren't encoded in NOP space
|
|
// like BTI/Pointer Authentication and will crash older cores with a SIGILL if
|
|
// used incorrectly. This test demonstrates how it should be done and that
|
|
// this approach works.
|
|
if (cpu.has_mte()) {
|
|
#if !defined(__ARM_FEATURE_MEMORY_TAGGING)
|
|
// In this section, we're running on an MTE-compatible core, but we're
|
|
// building this file without MTE support. Fail this test to indicate that
|
|
// there's a problem with the base/ build configuration.
|
|
GTEST_FAIL()
|
|
<< "MTE support detected (but base/ built without MTE support)";
|
|
#else
|
|
char ptr[32];
|
|
uint64_t val;
|
|
// Execute a trivial MTE instruction. Normally, MTE should be used via the
|
|
// intrinsics documented at
|
|
// https://developer.arm.com/documentation/101028/0012/10--Memory-tagging-intrinsics,
|
|
// this test uses the irg (Insert Random Tag) instruction directly to make
|
|
// sure that it's not optimized out by the compiler.
|
|
__asm__ __volatile__("irg %0, %1" : "=r"(val) : "r"(ptr));
|
|
#endif // __ARM_FEATURE_MEMORY_TAGGING
|
|
}
|
|
#endif // ARCH_CPU_ARM64
|
|
}
|
|
|
|
// For https://crbug.com/249713
|
|
TEST(CPU, BrandAndVendorContainsNoNUL) {
|
|
base::CPU cpu;
|
|
EXPECT_FALSE(base::Contains(cpu.cpu_brand(), '\0'));
|
|
EXPECT_FALSE(base::Contains(cpu.vendor_name(), '\0'));
|
|
}
|
|
|
|
#if defined(ARCH_CPU_X86_FAMILY)
|
|
// Tests that we compute the correct CPU family and model based on the vendor
|
|
// and CPUID signature.
|
|
TEST(CPU, X86FamilyAndModel) {
|
|
base::internal::X86ModelInfo info;
|
|
|
|
// Check with an Intel Skylake signature.
|
|
info = base::internal::ComputeX86FamilyAndModel("GenuineIntel", 0x000406e3);
|
|
EXPECT_EQ(info.family, 6);
|
|
EXPECT_EQ(info.model, 78);
|
|
EXPECT_EQ(info.ext_family, 0);
|
|
EXPECT_EQ(info.ext_model, 4);
|
|
|
|
// Check with an Intel Airmont signature.
|
|
info = base::internal::ComputeX86FamilyAndModel("GenuineIntel", 0x000406c2);
|
|
EXPECT_EQ(info.family, 6);
|
|
EXPECT_EQ(info.model, 76);
|
|
EXPECT_EQ(info.ext_family, 0);
|
|
EXPECT_EQ(info.ext_model, 4);
|
|
|
|
// Check with an Intel Prescott signature.
|
|
info = base::internal::ComputeX86FamilyAndModel("GenuineIntel", 0x00000f31);
|
|
EXPECT_EQ(info.family, 15);
|
|
EXPECT_EQ(info.model, 3);
|
|
EXPECT_EQ(info.ext_family, 0);
|
|
EXPECT_EQ(info.ext_model, 0);
|
|
|
|
// Check with an AMD Excavator signature.
|
|
info = base::internal::ComputeX86FamilyAndModel("AuthenticAMD", 0x00670f00);
|
|
EXPECT_EQ(info.family, 21);
|
|
EXPECT_EQ(info.model, 112);
|
|
EXPECT_EQ(info.ext_family, 6);
|
|
EXPECT_EQ(info.ext_model, 7);
|
|
}
|
|
#endif // defined(ARCH_CPU_X86_FAMILY)
|
|
|
|
#if defined(ARCH_CPU_ARM_FAMILY) && \
|
|
(BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_ANDROID) || BUILDFLAG(IS_CHROMEOS))
|
|
TEST(CPU, ARMImplementerAndPartNumber) {
|
|
base::CPU cpu;
|
|
|
|
const std::string& cpu_brand = cpu.cpu_brand();
|
|
|
|
// Some devices, including on the CQ, do not report a cpu_brand
|
|
// https://crbug.com/1166533 and https://crbug.com/1167123.
|
|
EXPECT_EQ(cpu_brand, base::TrimWhitespaceASCII(cpu_brand, base::TRIM_ALL));
|
|
EXPECT_GT(cpu.implementer(), 0u);
|
|
EXPECT_GT(cpu.part_number(), 0u);
|
|
}
|
|
#endif // defined(ARCH_CPU_ARM_FAMILY) && (BUILDFLAG(IS_LINUX) ||
|
|
// BUILDFLAG(IS_ANDROID) || BUILDFLAG(IS_CHROMEOS))
|