
A PrefetchedSignedExchangeCache is attached to a RenderFrameHostImpl. This class holds prefetched signed exchanges when SignedExchangeSubresourcePrefetch is enabled. Not implemented yet but the prefetched signed exchanges will be passed to the next navigation. And the maching subresources will be loaded from the cache if the main resource is loaded from the cache. This CL introduces a logic to create the cache entry in PrefetchURLLoader, not in SignedExchangePrefetchHandler. It is because SignedExchangePrefetchHandler can't know the inner response and body of signed exchanges. Bug: 935267 Change-Id: Ifb9bef8e4dcf94b328efb912bd689dcee55882b4 Reviewed-on: https://chromium-review.googlesource.com/c/chromium/src/+/1568373 Commit-Queue: Tsuyoshi Horo <horo@chromium.org> Reviewed-by: Kouhei Ueno <kouhei@chromium.org> Reviewed-by: Kinuko Yasuda <kinuko@chromium.org> Reviewed-by: Kunihiko Sakamoto <ksakamoto@chromium.org> Cr-Commit-Position: refs/heads/master@{#654359}
613 lines
25 KiB
C++
613 lines
25 KiB
C++
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "content/browser/storage_partition_impl_map.h"
|
|
|
|
#include <unordered_set>
|
|
#include <utility>
|
|
|
|
#include "base/bind.h"
|
|
#include "base/bind_helpers.h"
|
|
#include "base/callback.h"
|
|
#include "base/command_line.h"
|
|
#include "base/files/file_enumerator.h"
|
|
#include "base/files/file_path.h"
|
|
#include "base/files/file_util.h"
|
|
#include "base/location.h"
|
|
#include "base/macros.h"
|
|
#include "base/single_thread_task_runner.h"
|
|
#include "base/strings/string_number_conversions.h"
|
|
#include "base/strings/string_util.h"
|
|
#include "base/strings/stringprintf.h"
|
|
#include "base/task/post_task.h"
|
|
#include "base/threading/thread_task_runner_handle.h"
|
|
#include "build/build_config.h"
|
|
#include "content/browser/appcache/appcache_interceptor.h"
|
|
#include "content/browser/appcache/chrome_appcache_service.h"
|
|
#include "content/browser/background_fetch/background_fetch_context.h"
|
|
#include "content/browser/blob_storage/chrome_blob_storage_context.h"
|
|
#include "content/browser/code_cache/generated_code_cache_context.h"
|
|
#include "content/browser/cookie_store/cookie_store_context.h"
|
|
#include "content/browser/devtools/devtools_url_request_interceptor.h"
|
|
#include "content/browser/fileapi/browser_file_system_helper.h"
|
|
#include "content/browser/loader/prefetch_url_loader_service.h"
|
|
#include "content/browser/loader/resource_request_info_impl.h"
|
|
#include "content/browser/resource_context_impl.h"
|
|
#include "content/browser/storage_partition_impl.h"
|
|
#include "content/browser/streams/stream.h"
|
|
#include "content/browser/streams/stream_context.h"
|
|
#include "content/browser/streams/stream_registry.h"
|
|
#include "content/browser/streams/stream_url_request_job.h"
|
|
#include "content/browser/webui/url_data_manager_backend.h"
|
|
#include "content/common/service_worker/service_worker_utils.h"
|
|
#include "content/public/browser/browser_context.h"
|
|
#include "content/public/browser/browser_task_traits.h"
|
|
#include "content/public/browser/browser_thread.h"
|
|
#include "content/public/browser/content_browser_client.h"
|
|
#include "content/public/browser/storage_partition.h"
|
|
#include "content/public/common/content_constants.h"
|
|
#include "content/public/common/content_features.h"
|
|
#include "content/public/common/content_switches.h"
|
|
#include "content/public/common/url_constants.h"
|
|
#include "crypto/sha2.h"
|
|
#include "net/url_request/url_request_context.h"
|
|
#include "net/url_request/url_request_context_getter.h"
|
|
#include "services/network/public/cpp/features.h"
|
|
#include "storage/browser/blob/blob_storage_context.h"
|
|
#include "storage/browser/blob/blob_url_request_job_factory.h"
|
|
#include "storage/browser/fileapi/file_system_url_request_job_factory.h"
|
|
|
|
using storage::FileSystemContext;
|
|
using storage::BlobStorageContext;
|
|
|
|
namespace content {
|
|
|
|
namespace {
|
|
|
|
// A derivative that knows about Streams too.
|
|
class BlobProtocolHandler : public net::URLRequestJobFactory::ProtocolHandler {
|
|
public:
|
|
BlobProtocolHandler(ChromeBlobStorageContext* blob_storage_context,
|
|
StreamContext* stream_context)
|
|
: blob_storage_context_(blob_storage_context),
|
|
stream_context_(stream_context) {}
|
|
|
|
~BlobProtocolHandler() override {}
|
|
|
|
net::URLRequestJob* MaybeCreateJob(
|
|
net::URLRequest* request,
|
|
net::NetworkDelegate* network_delegate) const override {
|
|
scoped_refptr<Stream> stream =
|
|
stream_context_->registry()->GetStream(request->url());
|
|
if (stream.get())
|
|
return new StreamURLRequestJob(request, network_delegate, stream);
|
|
|
|
if (!blob_protocol_handler_) {
|
|
// Construction is deferred because 'this' is constructed on
|
|
// the main thread but we want blob_protocol_handler_ constructed
|
|
// on the IO thread.
|
|
blob_protocol_handler_.reset(
|
|
new storage::BlobProtocolHandler(blob_storage_context_->context()));
|
|
}
|
|
return blob_protocol_handler_->MaybeCreateJob(request, network_delegate);
|
|
}
|
|
|
|
private:
|
|
const scoped_refptr<ChromeBlobStorageContext> blob_storage_context_;
|
|
const scoped_refptr<StreamContext> stream_context_;
|
|
mutable std::unique_ptr<storage::BlobProtocolHandler> blob_protocol_handler_;
|
|
DISALLOW_COPY_AND_ASSIGN(BlobProtocolHandler);
|
|
};
|
|
|
|
// These constants are used to create the directory structure under the profile
|
|
// where renderers with a non-default storage partition keep their persistent
|
|
// state. This will contain a set of directories that partially mirror the
|
|
// directory structure of BrowserContext::GetPath().
|
|
//
|
|
// The kStoragePartitionDirname contains an extensions directory which is
|
|
// further partitioned by extension id, followed by another level of directories
|
|
// for the "default" extension storage partition and one directory for each
|
|
// persistent partition used by a webview tag. Example:
|
|
//
|
|
// Storage/ext/ABCDEF/def
|
|
// Storage/ext/ABCDEF/hash(partition name)
|
|
//
|
|
// The code in GetStoragePartitionPath() constructs these path names.
|
|
//
|
|
// TODO(nasko): Move extension related path code out of content.
|
|
const base::FilePath::CharType kStoragePartitionDirname[] =
|
|
FILE_PATH_LITERAL("Storage");
|
|
const base::FilePath::CharType kExtensionsDirname[] =
|
|
FILE_PATH_LITERAL("ext");
|
|
const base::FilePath::CharType kDefaultPartitionDirname[] =
|
|
FILE_PATH_LITERAL("def");
|
|
const base::FilePath::CharType kTrashDirname[] =
|
|
FILE_PATH_LITERAL("trash");
|
|
|
|
// Because partition names are user specified, they can be arbitrarily long
|
|
// which makes them unsuitable for paths names. We use a truncation of a
|
|
// SHA256 hash to perform a deterministic shortening of the string. The
|
|
// kPartitionNameHashBytes constant controls the length of the truncation.
|
|
// We use 6 bytes, which gives us 99.999% reliability against collisions over
|
|
// 1 million partition domains.
|
|
//
|
|
// Analysis:
|
|
// We assume that all partition names within one partition domain are
|
|
// controlled by the the same entity. Thus there is no chance for adverserial
|
|
// attack and all we care about is accidental collision. To get 5 9s over
|
|
// 1 million domains, we need the probability of a collision in any one domain
|
|
// to be
|
|
//
|
|
// p < nroot(1000000, .99999) ~= 10^-11
|
|
//
|
|
// We use the following birthday attack approximation to calculate the max
|
|
// number of unique names for this probability:
|
|
//
|
|
// n(p,H) = sqrt(2*H * ln(1/(1-p)))
|
|
//
|
|
// For a 6-byte hash, H = 2^(6*8). n(10^-11, H) ~= 75
|
|
//
|
|
// An average partition domain is likely to have less than 10 unique
|
|
// partition names which is far lower than 75.
|
|
//
|
|
// Note, that for 4 9s of reliability, the limit is 237 partition names per
|
|
// partition domain.
|
|
const int kPartitionNameHashBytes = 6;
|
|
|
|
// Needed for selecting all files in ObliterateOneDirectory() below.
|
|
#if defined(OS_POSIX)
|
|
const int kAllFileTypes = base::FileEnumerator::FILES |
|
|
base::FileEnumerator::DIRECTORIES |
|
|
base::FileEnumerator::SHOW_SYM_LINKS;
|
|
#else
|
|
const int kAllFileTypes = base::FileEnumerator::FILES |
|
|
base::FileEnumerator::DIRECTORIES;
|
|
#endif
|
|
|
|
base::FilePath GetStoragePartitionDomainPath(
|
|
const std::string& partition_domain) {
|
|
CHECK(base::IsStringUTF8(partition_domain));
|
|
|
|
return base::FilePath(kStoragePartitionDirname).Append(kExtensionsDirname)
|
|
.Append(base::FilePath::FromUTF8Unsafe(partition_domain));
|
|
}
|
|
|
|
// Helper function for doing a depth-first deletion of the data on disk.
|
|
// Examines paths directly in |current_dir| (no recursion) and tries to
|
|
// delete from disk anything that is in, or isn't a parent of something in
|
|
// |paths_to_keep|. Paths that need further expansion are added to
|
|
// |paths_to_consider|.
|
|
void ObliterateOneDirectory(const base::FilePath& current_dir,
|
|
const std::vector<base::FilePath>& paths_to_keep,
|
|
std::vector<base::FilePath>* paths_to_consider) {
|
|
CHECK(current_dir.IsAbsolute());
|
|
|
|
base::FileEnumerator enumerator(current_dir, false, kAllFileTypes);
|
|
for (base::FilePath to_delete = enumerator.Next(); !to_delete.empty();
|
|
to_delete = enumerator.Next()) {
|
|
// Enum tracking which of the 3 possible actions to take for |to_delete|.
|
|
enum { kSkip, kEnqueue, kDelete } action = kDelete;
|
|
|
|
for (auto to_keep = paths_to_keep.begin(); to_keep != paths_to_keep.end();
|
|
++to_keep) {
|
|
if (to_delete == *to_keep) {
|
|
action = kSkip;
|
|
break;
|
|
} else if (to_delete.IsParent(*to_keep)) {
|
|
// |to_delete| contains a path to keep. Add to stack for further
|
|
// processing.
|
|
action = kEnqueue;
|
|
break;
|
|
}
|
|
}
|
|
|
|
switch (action) {
|
|
case kDelete:
|
|
base::DeleteFile(to_delete, true);
|
|
break;
|
|
|
|
case kEnqueue:
|
|
paths_to_consider->push_back(to_delete);
|
|
break;
|
|
|
|
case kSkip:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Synchronously attempts to delete |unnormalized_root|, preserving only
|
|
// entries in |paths_to_keep|. If there are no entries in |paths_to_keep| on
|
|
// disk, then it completely removes |unnormalized_root|. All paths must be
|
|
// absolute paths.
|
|
void BlockingObliteratePath(
|
|
const base::FilePath& unnormalized_browser_context_root,
|
|
const base::FilePath& unnormalized_root,
|
|
const std::vector<base::FilePath>& paths_to_keep,
|
|
const scoped_refptr<base::TaskRunner>& closure_runner,
|
|
const base::Closure& on_gc_required) {
|
|
// Early exit required because MakeAbsoluteFilePath() will fail on POSIX
|
|
// if |unnormalized_root| does not exist. This is safe because there is
|
|
// nothing to do in this situation anwyays.
|
|
if (!base::PathExists(unnormalized_root)) {
|
|
return;
|
|
}
|
|
|
|
// Never try to obliterate things outside of the browser context root or the
|
|
// browser context root itself. Die hard.
|
|
base::FilePath root = base::MakeAbsoluteFilePath(unnormalized_root);
|
|
base::FilePath browser_context_root =
|
|
base::MakeAbsoluteFilePath(unnormalized_browser_context_root);
|
|
CHECK(!root.empty());
|
|
CHECK(!browser_context_root.empty());
|
|
CHECK(browser_context_root.IsParent(root) && browser_context_root != root);
|
|
|
|
// Reduce |paths_to_keep| set to those under the root and actually on disk.
|
|
std::vector<base::FilePath> valid_paths_to_keep;
|
|
for (auto it = paths_to_keep.begin(); it != paths_to_keep.end(); ++it) {
|
|
if (root.IsParent(*it) && base::PathExists(*it))
|
|
valid_paths_to_keep.push_back(*it);
|
|
}
|
|
|
|
// If none of the |paths_to_keep| are valid anymore then we just whack the
|
|
// root and be done with it. Otherwise, signal garbage collection and do
|
|
// a best-effort delete of the on-disk structures.
|
|
if (valid_paths_to_keep.empty()) {
|
|
base::DeleteFile(root, true);
|
|
return;
|
|
}
|
|
closure_runner->PostTask(FROM_HERE, on_gc_required);
|
|
|
|
// Otherwise, start at the root and delete everything that is not in
|
|
// |valid_paths_to_keep|.
|
|
std::vector<base::FilePath> paths_to_consider;
|
|
paths_to_consider.push_back(root);
|
|
while(!paths_to_consider.empty()) {
|
|
base::FilePath path = paths_to_consider.back();
|
|
paths_to_consider.pop_back();
|
|
ObliterateOneDirectory(path, valid_paths_to_keep, &paths_to_consider);
|
|
}
|
|
}
|
|
|
|
// Ensures each path in |active_paths| is a direct child of storage_root.
|
|
void NormalizeActivePaths(const base::FilePath& storage_root,
|
|
std::unordered_set<base::FilePath>* active_paths) {
|
|
std::unordered_set<base::FilePath> normalized_active_paths;
|
|
|
|
for (auto iter = active_paths->begin(); iter != active_paths->end(); ++iter) {
|
|
base::FilePath relative_path;
|
|
if (!storage_root.AppendRelativePath(*iter, &relative_path))
|
|
continue;
|
|
|
|
std::vector<base::FilePath::StringType> components;
|
|
relative_path.GetComponents(&components);
|
|
|
|
DCHECK(!relative_path.empty());
|
|
normalized_active_paths.insert(storage_root.Append(components.front()));
|
|
}
|
|
|
|
active_paths->swap(normalized_active_paths);
|
|
}
|
|
|
|
// Deletes all entries inside the |storage_root| that are not in the
|
|
// |active_paths|. Deletion is done in 2 steps:
|
|
//
|
|
// (1) Moving all garbage collected paths into a trash directory.
|
|
// (2) Asynchronously deleting the trash directory.
|
|
//
|
|
// The deletion is asynchronous because after (1) completes, calling code can
|
|
// safely continue to use the paths that had just been garbage collected
|
|
// without fear of race conditions.
|
|
//
|
|
// This code also ignores failed moves rather than attempting a smarter retry.
|
|
// Moves shouldn't fail here unless there is some out-of-band error (eg.,
|
|
// FS corruption). Retry logic is dangerous in the general case because
|
|
// there is not necessarily a guaranteed case where the logic may succeed.
|
|
//
|
|
// This function is still named BlockingGarbageCollect() because it does
|
|
// execute a few filesystem operations synchronously.
|
|
void BlockingGarbageCollect(
|
|
const base::FilePath& storage_root,
|
|
const scoped_refptr<base::TaskRunner>& file_access_runner,
|
|
std::unique_ptr<std::unordered_set<base::FilePath>> active_paths) {
|
|
CHECK(storage_root.IsAbsolute());
|
|
|
|
NormalizeActivePaths(storage_root, active_paths.get());
|
|
|
|
base::FileEnumerator enumerator(storage_root, false, kAllFileTypes);
|
|
base::FilePath trash_directory;
|
|
if (!base::CreateTemporaryDirInDir(storage_root, kTrashDirname,
|
|
&trash_directory)) {
|
|
// Unable to continue without creating the trash directory so give up.
|
|
return;
|
|
}
|
|
for (base::FilePath path = enumerator.Next(); !path.empty();
|
|
path = enumerator.Next()) {
|
|
if (active_paths->find(path) == active_paths->end() &&
|
|
path != trash_directory) {
|
|
// Since |trash_directory| is unique for each run of this function there
|
|
// can be no colllisions on the move.
|
|
base::Move(path, trash_directory.Append(path.BaseName()));
|
|
}
|
|
}
|
|
|
|
file_access_runner->PostTask(
|
|
FROM_HERE, base::BindOnce(base::IgnoreResult(&base::DeleteFile),
|
|
trash_directory, true));
|
|
}
|
|
|
|
} // namespace
|
|
|
|
// static
|
|
base::FilePath StoragePartitionImplMap::GetStoragePartitionPath(
|
|
const std::string& partition_domain,
|
|
const std::string& partition_name) {
|
|
if (partition_domain.empty())
|
|
return base::FilePath();
|
|
|
|
base::FilePath path = GetStoragePartitionDomainPath(partition_domain);
|
|
|
|
// TODO(ajwong): Mangle in-memory into this somehow, either by putting
|
|
// it into the partition_name, or by manually adding another path component
|
|
// here. Otherwise, it's possible to have an in-memory StoragePartition and
|
|
// a persistent one that return the same FilePath for GetPath().
|
|
if (!partition_name.empty()) {
|
|
// For analysis of why we can ignore collisions, see the comment above
|
|
// kPartitionNameHashBytes.
|
|
char buffer[kPartitionNameHashBytes];
|
|
crypto::SHA256HashString(partition_name, &buffer[0],
|
|
sizeof(buffer));
|
|
return path.AppendASCII(base::HexEncode(buffer, sizeof(buffer)));
|
|
}
|
|
|
|
return path.Append(kDefaultPartitionDirname);
|
|
}
|
|
|
|
StoragePartitionImplMap::StoragePartitionImplMap(
|
|
BrowserContext* browser_context)
|
|
: browser_context_(browser_context),
|
|
file_access_runner_(base::CreateSequencedTaskRunnerWithTraits(
|
|
{base::MayBlock(), base::TaskPriority::BEST_EFFORT})),
|
|
resource_context_initialized_(false) {}
|
|
|
|
StoragePartitionImplMap::~StoragePartitionImplMap() {
|
|
}
|
|
|
|
StoragePartitionImpl* StoragePartitionImplMap::Get(
|
|
const std::string& partition_domain,
|
|
const std::string& partition_name,
|
|
bool in_memory,
|
|
bool can_create) {
|
|
// Find the previously created partition if it's available.
|
|
StoragePartitionConfig partition_config(
|
|
partition_domain, partition_name, in_memory);
|
|
|
|
PartitionMap::const_iterator it = partitions_.find(partition_config);
|
|
if (it != partitions_.end())
|
|
return it->second.get();
|
|
|
|
if (!can_create)
|
|
return nullptr;
|
|
|
|
base::FilePath relative_partition_path =
|
|
GetStoragePartitionPath(partition_domain, partition_name);
|
|
|
|
std::unique_ptr<StoragePartitionImpl> partition_ptr(
|
|
StoragePartitionImpl::Create(browser_context_, in_memory,
|
|
relative_partition_path, partition_domain));
|
|
StoragePartitionImpl* partition = partition_ptr.get();
|
|
partitions_[partition_config] = std::move(partition_ptr);
|
|
|
|
ChromeBlobStorageContext* blob_storage_context =
|
|
ChromeBlobStorageContext::GetFor(browser_context_);
|
|
StreamContext* stream_context = StreamContext::GetFor(browser_context_);
|
|
ProtocolHandlerMap protocol_handlers;
|
|
protocol_handlers[url::kBlobScheme] = std::make_unique<BlobProtocolHandler>(
|
|
blob_storage_context, stream_context);
|
|
protocol_handlers[url::kFileSystemScheme] = CreateFileSystemProtocolHandler(
|
|
partition_domain, partition->GetFileSystemContext());
|
|
for (const auto& scheme : URLDataManagerBackend::GetWebUISchemes()) {
|
|
protocol_handlers[scheme] = URLDataManagerBackend::CreateProtocolHandler(
|
|
browser_context_->GetResourceContext(), blob_storage_context);
|
|
}
|
|
|
|
URLRequestInterceptorScopedVector request_interceptors;
|
|
|
|
auto devtools_interceptor =
|
|
DevToolsURLRequestInterceptor::MaybeCreate(browser_context_);
|
|
if (devtools_interceptor)
|
|
request_interceptors.push_back(std::move(devtools_interceptor));
|
|
request_interceptors.push_back(std::make_unique<AppCacheInterceptor>());
|
|
|
|
if (!base::FeatureList::IsEnabled(network::features::kNetworkService)) {
|
|
// These calls must happen after StoragePartitionImpl::Create().
|
|
if (partition_domain.empty()) {
|
|
partition->SetURLRequestContext(browser_context_->CreateRequestContext(
|
|
&protocol_handlers, std::move(request_interceptors)));
|
|
} else {
|
|
partition->SetURLRequestContext(
|
|
browser_context_->CreateRequestContextForStoragePartition(
|
|
partition->GetPath(), in_memory, &protocol_handlers,
|
|
std::move(request_interceptors)));
|
|
}
|
|
}
|
|
|
|
// A separate media cache isn't used with the network service.
|
|
if (!base::FeatureList::IsEnabled(network::features::kNetworkService)) {
|
|
partition->SetMediaURLRequestContext(
|
|
partition_domain.empty()
|
|
? browser_context_->CreateMediaRequestContext()
|
|
: browser_context_->CreateMediaRequestContextForStoragePartition(
|
|
partition->GetPath(), in_memory));
|
|
}
|
|
|
|
// Arm the serviceworker cookie change observation API.
|
|
partition->GetCookieStoreContext()->ListenToCookieChanges(
|
|
partition->GetNetworkContext(), /*success_callback=*/base::DoNothing());
|
|
|
|
if (!base::FeatureList::IsEnabled(network::features::kNetworkService)) {
|
|
// This needs to happen after SetURLRequestContext() since we need this
|
|
// code path only for non-NetworkService cases where NetworkContext needs to
|
|
// be initialized using |url_request_context_|, which is initialized by
|
|
// SetURLRequestContext().
|
|
DCHECK(partition->url_loader_factory_getter());
|
|
DCHECK(partition->url_request_context_);
|
|
partition->url_loader_factory_getter()->HandleFactoryRequests();
|
|
}
|
|
|
|
PostCreateInitialization(partition, in_memory);
|
|
|
|
return partition;
|
|
}
|
|
|
|
void StoragePartitionImplMap::AsyncObliterate(
|
|
const GURL& site,
|
|
const base::Closure& on_gc_required) {
|
|
// This method should avoid creating any StoragePartition (which would
|
|
// create more open file handles) so that it can delete as much of the
|
|
// data off disk as possible.
|
|
std::string partition_domain;
|
|
std::string partition_name;
|
|
bool in_memory = false;
|
|
GetContentClient()->browser()->GetStoragePartitionConfigForSite(
|
|
browser_context_, site, false, &partition_domain,
|
|
&partition_name, &in_memory);
|
|
|
|
// Find the active partitions for the domain. Because these partitions are
|
|
// active, it is not possible to just delete the directories that contain
|
|
// the backing data structures without causing the browser to crash. Instead,
|
|
// of deleteing the directory, we tell each storage context later to
|
|
// remove any data they have saved. This will leave the directory structure
|
|
// intact but it will only contain empty databases.
|
|
std::vector<StoragePartitionImpl*> active_partitions;
|
|
std::vector<base::FilePath> paths_to_keep;
|
|
for (PartitionMap::const_iterator it = partitions_.begin();
|
|
it != partitions_.end();
|
|
++it) {
|
|
const StoragePartitionConfig& config = it->first;
|
|
if (config.partition_domain == partition_domain) {
|
|
it->second->ClearData(
|
|
// All except shader cache.
|
|
~StoragePartition::REMOVE_DATA_MASK_SHADER_CACHE,
|
|
StoragePartition::QUOTA_MANAGED_STORAGE_MASK_ALL, GURL(),
|
|
base::Time(), base::Time::Max(), base::DoNothing());
|
|
if (!config.in_memory) {
|
|
paths_to_keep.push_back(it->second->GetPath());
|
|
}
|
|
}
|
|
}
|
|
|
|
// Start a best-effort delete of the on-disk storage excluding paths that are
|
|
// known to still be in use. This is to delete any previously created
|
|
// StoragePartition state that just happens to not have been used during this
|
|
// run of the browser.
|
|
base::FilePath domain_root = browser_context_->GetPath().Append(
|
|
GetStoragePartitionDomainPath(partition_domain));
|
|
|
|
base::PostTaskWithTraits(
|
|
FROM_HERE, {base::MayBlock(), base::TaskPriority::BEST_EFFORT},
|
|
base::BindOnce(&BlockingObliteratePath, browser_context_->GetPath(),
|
|
domain_root, paths_to_keep,
|
|
base::ThreadTaskRunnerHandle::Get(), on_gc_required));
|
|
}
|
|
|
|
void StoragePartitionImplMap::GarbageCollect(
|
|
std::unique_ptr<std::unordered_set<base::FilePath>> active_paths,
|
|
const base::Closure& done) {
|
|
// Include all paths for current StoragePartitions in the active_paths since
|
|
// they cannot be deleted safely.
|
|
for (PartitionMap::const_iterator it = partitions_.begin();
|
|
it != partitions_.end();
|
|
++it) {
|
|
const StoragePartitionConfig& config = it->first;
|
|
if (!config.in_memory)
|
|
active_paths->insert(it->second->GetPath());
|
|
}
|
|
|
|
// Find the directory holding the StoragePartitions and delete everything in
|
|
// there that isn't considered active.
|
|
base::FilePath storage_root = browser_context_->GetPath().Append(
|
|
GetStoragePartitionDomainPath(std::string()));
|
|
file_access_runner_->PostTaskAndReply(
|
|
FROM_HERE,
|
|
base::BindOnce(&BlockingGarbageCollect, storage_root, file_access_runner_,
|
|
std::move(active_paths)),
|
|
done);
|
|
}
|
|
|
|
void StoragePartitionImplMap::ForEach(
|
|
const BrowserContext::StoragePartitionCallback& callback) {
|
|
for (PartitionMap::const_iterator it = partitions_.begin();
|
|
it != partitions_.end();
|
|
++it) {
|
|
callback.Run(it->second.get());
|
|
}
|
|
}
|
|
|
|
void StoragePartitionImplMap::PostCreateInitialization(
|
|
StoragePartitionImpl* partition,
|
|
bool in_memory) {
|
|
// TODO(ajwong): ResourceContexts no longer have any storage related state.
|
|
// We should move this into a place where it is called once per
|
|
// BrowserContext creation rather than piggybacking off the default context
|
|
// creation.
|
|
// Note: moving this into Get() before partitions_[] is set causes reentrency.
|
|
if (!resource_context_initialized_) {
|
|
resource_context_initialized_ = true;
|
|
InitializeResourceContext(browser_context_);
|
|
}
|
|
|
|
scoped_refptr<net::URLRequestContextGetter> request_context_getter;
|
|
if (!base::FeatureList::IsEnabled(network::features::kNetworkService))
|
|
request_context_getter = partition->GetURLRequestContext();
|
|
|
|
// Check first to avoid memory leak in unittests.
|
|
if (BrowserThread::IsThreadInitialized(BrowserThread::IO)) {
|
|
base::PostTaskWithTraits(
|
|
FROM_HERE, {BrowserThread::IO},
|
|
base::BindOnce(
|
|
&ChromeAppCacheService::InitializeOnIOThread,
|
|
partition->GetAppCacheService(),
|
|
in_memory ? base::FilePath()
|
|
: partition->GetPath().Append(kAppCacheDirname),
|
|
browser_context_->GetResourceContext(), request_context_getter,
|
|
base::RetainedRef(browser_context_->GetSpecialStoragePolicy())));
|
|
|
|
base::PostTaskWithTraits(
|
|
FROM_HERE, {BrowserThread::IO},
|
|
base::BindOnce(&CacheStorageContextImpl::SetBlobParametersForCache,
|
|
partition->GetCacheStorageContext(),
|
|
base::RetainedRef(ChromeBlobStorageContext::GetFor(
|
|
browser_context_))));
|
|
|
|
base::PostTaskWithTraits(
|
|
FROM_HERE, {BrowserThread::IO},
|
|
base::BindOnce(&ServiceWorkerContextWrapper::InitializeResourceContext,
|
|
partition->GetServiceWorkerContext(),
|
|
browser_context_->GetResourceContext()));
|
|
|
|
base::PostTaskWithTraits(
|
|
FROM_HERE, {BrowserThread::IO},
|
|
base::BindOnce(
|
|
&PrefetchURLLoaderService::InitializeResourceContext,
|
|
partition->GetPrefetchURLLoaderService(),
|
|
browser_context_->GetResourceContext(), request_context_getter,
|
|
base::RetainedRef(
|
|
ChromeBlobStorageContext::GetFor(browser_context_))));
|
|
|
|
base::PostTaskWithTraits(
|
|
FROM_HERE, {BrowserThread::IO},
|
|
base::BindOnce(&BackgroundFetchContext::InitializeOnIOThread,
|
|
partition->GetBackgroundFetchContext()));
|
|
|
|
// We do not call InitializeURLRequestContext() for media contexts because,
|
|
// other than the HTTP cache, the media contexts share the same backing
|
|
// objects as their associated "normal" request context. Thus, the previous
|
|
// call serves to initialize the media request context for this storage
|
|
// partition as well.
|
|
}
|
|
}
|
|
|
|
} // namespace content
|