0

ash: refactor crypto in TokenEncryptor

This change migrates TokenEncryptor to the new crypto/aes_ctr and
crypto/kdf interfaces, which allows deleting a bunch of failure paths
that are now impossible. This change also documents how TokenEncryptor's
encryption works and the weaknesses of the scheme.

Bug: 372283556
Change-Id: I683df58a45139c173b43515853313f705687a214
Reviewed-on: https://chromium-review.googlesource.com/c/chromium/src/+/6056044
Reviewed-by: Sergey Poromov <poromov@chromium.org>
Reviewed-by: David Benjamin <davidben@chromium.org>
Commit-Queue: Elly FJ <ellyjones@chromium.org>
Cr-Commit-Position: refs/heads/main@{#1394877}
This commit is contained in:
Elly
2024-12-11 08:39:25 -08:00
committed by Chromium LUCI CQ
parent e69ca9e7ce
commit 11005ea4bf
3 changed files with 62 additions and 124 deletions

@ -11,34 +11,37 @@
#include <vector>
#include "base/check_is_test.h"
#include "base/containers/span.h"
#include "base/logging.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_util.h"
#include "base/system/sys_info.h"
#include "chromeos/ash/components/cryptohome/system_salt_getter.h"
#include "crypto/encryptor.h"
#include "crypto/nss_util.h"
#include "crypto/aes_ctr.h"
#include "crypto/kdf.h"
#include "crypto/random.h"
#include "crypto/sha2.h"
#include "crypto/symmetric_key.h"
#include "crypto/subtle_passkey.h"
namespace ash {
namespace {
const size_t kNonceSize = 16;
constexpr crypto::kdf::Pbkdf2HmacSha1Params kPbkdf2Params = {
.iterations = 1000,
};
} // namespace
CryptohomeTokenEncryptor::CryptohomeTokenEncryptor(
const std::string& system_salt)
: system_salt_(system_salt) {
DCHECK(!system_salt.empty());
// TODO(davidroche): should this use the system salt for both the password
// and the salt value, or should this use a separate salt value?
system_salt_key_ = PassphraseToKey(system_salt_, system_salt_);
const std::string& system_salt) {
CHECK(!system_salt.empty());
auto salt = base::as_byte_span(system_salt);
crypto::kdf::DeriveKeyPbkdf2HmacSha1(kPbkdf2Params, salt, salt, key_,
crypto::SubtlePassKey{});
base::span(nonce_).copy_from(salt.first<kNonceSize>());
}
CryptohomeTokenEncryptor::~CryptohomeTokenEncryptor() {
}
CryptohomeTokenEncryptor::~CryptohomeTokenEncryptor() {}
std::string CryptohomeTokenEncryptor::EncryptWithSystemSalt(
std::string_view token) {
@ -46,32 +49,16 @@ std::string CryptohomeTokenEncryptor::EncryptWithSystemSalt(
if (!base::SysInfo::IsRunningOnChromeOS())
return std::string(token);
if (!system_salt_key_) {
LOG(WARNING) << "System salt key is not available for encrypt.";
return std::string();
}
// Encrypt the token using the system salt as the key and a nonce as the
// counter.
crypto::Encryptor encryptor;
if (!encryptor.Init(system_salt_key_.get(), crypto::Encryptor::CTR,
std::string())) {
LOG(WARNING) << "Failed to initialize Encryptor.";
return std::string();
}
std::array<uint8_t, kNonceSize> nonce;
crypto::RandBytes(nonce);
CHECK(encryptor.SetCounter(nonce));
std::string encoded_token;
if (!encryptor.Encrypt(token, &encoded_token)) {
LOG(WARNING) << "Failed to encrypt token.";
return std::string();
}
auto ciphertext =
crypto::aes_ctr::Encrypt(key_, nonce, base::as_byte_span(token));
// Return a concatenation of the nonce (counter) and the encrypted data, both
// hex-encoded.
return base::ToLowerASCII(base::HexEncode(nonce) +
base::HexEncode(encoded_token));
base::HexEncode(ciphertext));
}
std::string CryptohomeTokenEncryptor::DecryptWithSystemSalt(
@ -81,11 +68,6 @@ std::string CryptohomeTokenEncryptor::DecryptWithSystemSalt(
return std::string(encrypted_token_hex);
}
if (!system_salt_key_) {
LOG(WARNING) << "System salt key is not available for decrypt.";
return std::string();
}
// Convert the encrypted token from hex to binary and then split out the
// counter at the start from the rest of the payload.
std::string encrypted_token;
@ -97,24 +79,12 @@ std::string CryptohomeTokenEncryptor::DecryptWithSystemSalt(
LOG(WARNING) << "Corrupt encrypted token found, too short.";
return std::string();
}
std::string_view encrypted_token_view = encrypted_token;
std::string_view counter = encrypted_token_view.substr(0, kNonceSize);
std::string_view payload = encrypted_token_view.substr(kNonceSize);
// Use the salt+nonce to decrypt the
crypto::Encryptor encryptor;
if (!encryptor.Init(system_salt_key_.get(), crypto::Encryptor::CTR,
std::string())) {
LOG(WARNING) << "Failed to initialize Encryptor.";
return std::string();
}
std::string token;
CHECK(encryptor.SetCounter(counter));
if (!encryptor.Decrypt(payload, &token)) {
LOG(WARNING) << "Failed to decrypt token.";
return std::string();
}
return token;
auto nonce = base::as_byte_span(encrypted_token).first<kNonceSize>();
auto payload = base::as_byte_span(encrypted_token).subspan<kNonceSize>();
return std::string(
base::as_string_view(crypto::aes_ctr::Decrypt(key_, nonce, payload)));
}
std::string CryptohomeTokenEncryptor::WeakEncryptWithSystemSalt(
@ -127,29 +97,8 @@ std::string CryptohomeTokenEncryptor::WeakEncryptWithSystemSalt(
return token;
}
if (!system_salt_key_) {
LOG(WARNING) << "System salt key is not available for encrypt.";
return std::string();
}
// Encrypt the token using the system salt as both the key and the counter.
// Note that using the salt for both of these things is problematic, which is
// why this encryption is "weak".
crypto::Encryptor encryptor;
if (!encryptor.Init(system_salt_key_.get(), crypto::Encryptor::CTR,
std::string())) {
LOG(WARNING) << "Failed to initialize Encryptor.";
return std::string();
}
std::string nonce = system_salt_.substr(0, kNonceSize);
std::string encoded_token;
CHECK(encryptor.SetCounter(nonce));
if (!encryptor.Encrypt(token, &encoded_token)) {
LOG(WARNING) << "Failed to encrypt token.";
return std::string();
}
return base::ToLowerASCII(base::HexEncode(encoded_token));
return base::ToLowerASCII(base::HexEncode(
crypto::aes_ctr::Encrypt(key_, nonce_, base::as_byte_span(token))));
}
std::string CryptohomeTokenEncryptor::WeakDecryptWithSystemSalt(
@ -159,39 +108,13 @@ std::string CryptohomeTokenEncryptor::WeakDecryptWithSystemSalt(
return encrypted_token_hex;
}
if (!system_salt_key_) {
LOG(WARNING) << "System salt key is not available for decrypt.";
return std::string();
}
std::string encrypted_token;
if (!base::HexStringToString(encrypted_token_hex, &encrypted_token)) {
std::vector<uint8_t> encrypted_token;
if (!base::HexStringToBytes(encrypted_token_hex, &encrypted_token)) {
LOG(WARNING) << "Corrupt encrypted token found.";
return std::string();
}
crypto::Encryptor encryptor;
if (!encryptor.Init(system_salt_key_.get(), crypto::Encryptor::CTR,
std::string())) {
LOG(WARNING) << "Failed to initialize Encryptor.";
return std::string();
}
std::string nonce = system_salt_.substr(0, kNonceSize);
std::string token;
CHECK(encryptor.SetCounter(nonce));
if (!encryptor.Decrypt(encrypted_token, &token)) {
LOG(WARNING) << "Failed to decrypt token.";
return std::string();
}
return token;
}
std::unique_ptr<crypto::SymmetricKey> CryptohomeTokenEncryptor::PassphraseToKey(
const std::string& passphrase,
const std::string& salt) {
return crypto::SymmetricKey::DeriveKeyFromPasswordUsingPbkdf2(
crypto::SymmetricKey::AES, passphrase, salt, 1000, 256);
return std::string(base::as_string_view(
crypto::aes_ctr::Decrypt(key_, nonce_, encrypted_token)));
}
} // namespace ash

@ -5,18 +5,32 @@
#ifndef CHROME_BROWSER_ASH_SETTINGS_TOKEN_ENCRYPTOR_H_
#define CHROME_BROWSER_ASH_SETTINGS_TOKEN_ENCRYPTOR_H_
#include <array>
#include <memory>
#include <string>
#include <string_view>
namespace crypto {
class SymmetricKey;
}
namespace ash {
// Interface class for classes that encrypt and decrypt tokens using the
// system salt.
//
// This class supports two methods of encryption: the old "weak" method and the
// new method. Unfortunately neither method provides actual confidentiality
// protection and both have completely equivalent strength. Both methods rely on
// the system salt, which is stored in the clear on disk. The old method is:
//
// AES-256-CTR(key = salt, counter = salt[0 .. 15], token)
//
// and the new method is:
//
// counter = random_bytes(16)
// counter || AES-256-CTR(key = salt, counter = counter, token)
//
// so in both cases there are no actual secrets involved as either key or
// counter. The only practical distinction is that the new method generates
// larger encoded values and that two separate encryptions of the same token
// will yield different encoded values.
class TokenEncryptor {
public:
virtual ~TokenEncryptor() = default;
@ -62,18 +76,11 @@ class CryptohomeTokenEncryptor : public TokenEncryptor {
const std::string& encrypted_token_hex) override;
private:
// Converts |passphrase| to a SymmetricKey using the given |salt|.
std::unique_ptr<crypto::SymmetricKey> PassphraseToKey(
const std::string& passphrase,
const std::string& salt);
static constexpr size_t kDerivedKeySize = 32;
static constexpr size_t kNonceSize = 16;
// The cached system salt passed to the constructor, originally coming
// from cryptohome daemon.
std::string system_salt_;
// A key based on the system salt. Useful for encrypting device-level
// data for which we have no additional credentials.
std::unique_ptr<crypto::SymmetricKey> system_salt_key_;
std::array<uint8_t, kDerivedKeySize> key_;
std::array<uint8_t, kNonceSize> nonce_;
};
} // namespace ash

@ -7,6 +7,10 @@
#include "crypto/crypto_export.h"
namespace ash {
class CryptohomeTokenEncryptor;
}
namespace syncer {
class Nigori;
}
@ -42,6 +46,10 @@ class CRYPTO_EXPORT SubtlePassKey final {
// SymmetricKey.
friend class SymmetricKey;
// This class uses custom PBKDF2 parameters, and has to keep doing so for
// compatibility with persisted data on disk.
friend class ash::CryptohomeTokenEncryptor;
// This class uses custom PBKDF2 parameters - the Nigori spec requires this.
friend class syncer::Nigori;