0

webnn: emulate dequantizeLinear on coreml

Add emulation code for when input is not constant, or blockwise, or
type is (u)int32 for `dequantizeLinear` on CoreML.

Bug: 338529226
Change-Id: I70994755baf1f34600d0cb5079698250ef5821e9
Reviewed-on: https://chromium-review.googlesource.com/c/chromium/src/+/6389321
Reviewed-by: Reilly Grant <reillyg@chromium.org>
Commit-Queue: Phillis Tang <phillis@chromium.org>
Cr-Commit-Position: refs/heads/main@{#1438377}
This commit is contained in:
Phillis Tang
2025-03-26 13:42:15 -07:00
committed by Chromium LUCI CQ
parent 34bbbbf7c4
commit d86938bae5
30 changed files with 302 additions and 491 deletions
services/webnn/coreml
third_party/blink/web_tests
external
wpt
webnn
platform
virtual

@ -1136,6 +1136,9 @@ ContextProperties GraphBuilderCoreml::GetContextProperties() {
static constexpr SupportedDataTypes kGatherIndicesSupportedDataTypes{
OperandDataType::kInt32, OperandDataType::kInt8, OperandDataType::kUint8};
static constexpr SupportedDataTypes kInts8Ints32{
OperandDataType::kInt8, OperandDataType::kUint8, OperandDataType::kInt32,
OperandDataType::kUint32};
SupportedDataTypes arg_min_max_input_supported_data_types = kFloatsAndInt32;
// crbug.com/388117627: On Intel devices, passing float input containing NaNs
// sometimes triggers a crash in Core ML.
@ -1195,11 +1198,11 @@ ContextProperties GraphBuilderCoreml::GetContextProperties() {
// input.
// TODO(crbug.com/361603703): Support constant (u)int4 inputs via
// https://apple.github.io/coremltools/source/coremltools.converters.mil.mil.ops.defs.html#coremltools.converters.mil.mil.ops.defs.iOS18.compression.constexpr_blockwise_shift_scale
/*dequantize_linear_input=*/{DataTypeConstraint::kInts8, kMaxRank},
/*dequantize_linear_input=*/{kInts8Ints32, kMaxRank},
/*dequantize_linear_scale=*/
{DataTypeConstraint::kFloat16To32, SupportedRanks::UpTo(1)},
{DataTypeConstraint::kFloat16To32, kMaxRank},
/*dequantize_linear_zero_point=*/
{DataTypeConstraint::kInts8, SupportedRanks::UpTo(1)},
{kInts8Ints32, kMaxRank},
/*add_input=*/{kFloatsAndInt32, kMaxRank},
/*sub_input=*/{kFloatsAndInt32, kMaxRank},
/*mul_input=*/{kFloatsAndInt32, kMaxRank},
@ -1392,12 +1395,10 @@ ContextProperties GraphBuilderCoreml::GetContextProperties() {
/*where_value=*/{kFloatsAndInt32, kMaxRank}});
if (__builtin_available(macOS 15, *)) {
properties.data_type_limits.dequantize_linear_scale.ranks = kMaxRank;
properties.data_type_limits.dequantize_linear_zero_point.ranks = kMaxRank;
properties.data_type_limits.dequantize_linear_input.data_types =
DataTypeConstraint::kInts4ToInts8;
DataTypeConstraint::kInts4Ints8Ints32;
properties.data_type_limits.dequantize_linear_zero_point.data_types =
DataTypeConstraint::kInts4ToInts8;
DataTypeConstraint::kInts4Ints8Ints32;
}
return properties;
}
@ -2354,16 +2355,14 @@ GraphBuilderCoreml::AddOperationForDequantizeLinear(
CHECK(context_properties_.data_type_limits.dequantize_linear_zero_point
.data_types.Has(zero_point_operand_data_type));
// TODO(crbug.com/338529226): These params must all be constant tensors.
if (!constant_operands_->contains(operation.zero_point_operand_id)) {
return NewNotSupportedError(
"Unsupported options to dequantizeLinear. 'zero_point' must be "
"constant.");
if (input_operand_data_type == OperandDataType::kInt32 ||
input_operand_data_type == OperandDataType::kUint32) {
return AddOperationForDequantizeLinearEmulate(operation, block);
}
if (!constant_operands_->contains(operation.scale_operand_id)) {
return NewNotSupportedError(
"Unsupported options to dequantizeLinear. 'scale' must be constant.");
if (!constant_operands_->contains(operation.zero_point_operand_id) ||
!constant_operands_->contains(operation.scale_operand_id)) {
return AddOperationForDequantizeLinearEmulate(operation, block);
}
CHECK_EQ(input_operand_info.mil_data_type,
@ -2386,17 +2385,32 @@ GraphBuilderCoreml::AddOperationForDequantizeLinear(
}
}
if (scale_operand_info.dimensions.size() == 1 &&
scale_operand_info.dimensions[0] !=
input_operand_info
.dimensions[input_operand_info.dimensions.size() - 1]) {
return NewNotSupportedError(
"Unsupported options to dequantizeLinear. The size of 'scale' must be "
"equal to the size of the input's last dimension.");
// CoreML `dequantize` and `constexpr_affine_dequantize` only support scalar
// or vector scale whose size matches with one axis of input.
base::span<const uint32_t> scale_dimensions = scale_operand_info.dimensions;
base::span<const uint32_t> input_dimensions = input_operand_info.dimensions;
CHECK_LE(scale_dimensions.size(), input_dimensions.size());
uint32_t scale_vector_size = 0;
size_t axis = 0;
bool has_matching_dimension = false;
for (size_t i = 0; i < scale_dimensions.size(); ++i) {
size_t current_axis = input_dimensions.size() + i - scale_dimensions.size();
if (scale_dimensions[i] != 1) {
// Only allow at most one matching dimension, otherwise emulate.
if (scale_dimensions[i] != input_dimensions[current_axis] ||
has_matching_dimension) {
return AddOperationForDequantizeLinearEmulate(operation, block);
} else {
axis = current_axis;
scale_vector_size = scale_dimensions[i];
has_matching_dimension = true;
}
}
}
if (is_constant_input) {
return AddOperationForDequantizeLinearConst(operation, block);
return AddOperationForDequantizeLinearConst(operation, axis,
scale_vector_size <= 1, block);
}
uint64_t input_operand_id = operation.input_operand_id;
@ -2415,17 +2429,23 @@ GraphBuilderCoreml::AddOperationForDequantizeLinear(
RETURN_IF_ERROR(SetInputFromOperand(*op->mutable_inputs(), kParamInput,
input_operand_id));
RETURN_IF_ERROR(SetInputFromOperand(*op->mutable_inputs(), kOpParamZeroPoint,
operation.zero_point_operand_id));
// If scale shape is [1], pass as scalar instead because CoreML only allows
// scalar or vector with size matching input dimension.
RETURN_IF_ERROR(SetInputFromConstantOperand(
*op->mutable_inputs(), kOpParamZeroPoint, operation.zero_point_operand_id,
scale_vector_size > 1 ? base::span<const uint32_t>{scale_vector_size}
: base::span<const uint32_t>{}));
RETURN_IF_ERROR(SetInputFromOperand(*op->mutable_inputs(), kOpParamScale,
operation.scale_operand_id));
RETURN_IF_ERROR(SetInputFromConstantOperand(
*op->mutable_inputs(), kOpParamScale, operation.scale_operand_id,
scale_vector_size > 1 ? base::span<const uint32_t>{scale_vector_size}
: base::span<const uint32_t>{}));
// An "axis" must be specified if "scale" is a vector.
if (!scale_operand_info.dimensions.empty()) {
SetInputWithValue(*op->mutable_inputs(), kOpParamAxis,
CreateScalarImmediateValue(base::checked_cast<int32_t>(
input_operand_info.dimensions.size() - 1)));
if (!scale_dimensions.empty()) {
SetInputWithValue(
*op->mutable_inputs(), kOpParamAxis,
CreateScalarImmediateValue(base::checked_cast<int32_t>(axis)));
}
if (input_operand_id != operation.input_operand_id) {
@ -2446,11 +2466,11 @@ GraphBuilderCoreml::AddOperationForDequantizeLinear(
[[nodiscard]] base::expected<void, mojom::ErrorPtr>
GraphBuilderCoreml::AddOperationForDequantizeLinearConst(
const mojom::DequantizeLinear& operation,
size_t axis,
bool is_scalar_scale,
CoreML::Specification::MILSpec::Block& block) {
const OperandInfo& input_operand_info =
GetOperandInfo(operation.input_operand_id);
const OperandInfo& scale_operand_info =
GetOperandInfo(operation.scale_operand_id);
CHECK(constant_operands_->contains(operation.input_operand_id));
CHECK(constant_operands_->contains(operation.zero_point_operand_id));
@ -2460,20 +2480,15 @@ GraphBuilderCoreml::AddOperationForDequantizeLinearConst(
op->set_type(kOpDequantizeLinearConstTypeName);
static constexpr char kParamInput[] = "quantized_data";
bool input_needs_reshape = input_operand_info.dimensions.empty();
std::vector<uint32_t> input_dimensions = input_operand_info.dimensions.empty()
? std::vector<uint32_t>{1}
: input_operand_info.dimensions;
CoreML::Specification::MILSpec::Value value;
if (input_needs_reshape) {
ASSIGN_OR_RETURN(value,
weights_file_handle_->Write(
operation.input_operand_id,
*constant_operands_->at(operation.input_operand_id),
std::array<uint32_t, 1>{1}));
} else {
ASSIGN_OR_RETURN(value,
weights_file_handle_->Write(
operation.input_operand_id,
*constant_operands_->at(operation.input_operand_id)));
}
ASSIGN_OR_RETURN(value,
weights_file_handle_->Write(
operation.input_operand_id,
*constant_operands_->at(operation.input_operand_id),
input_dimensions));
// This op requires all parameters passed as attributes instead of inputs.
(*op->mutable_attributes())[kParamInput] = std::move(value);
@ -2481,21 +2496,22 @@ GraphBuilderCoreml::AddOperationForDequantizeLinearConst(
(*op->mutable_attributes())[kOpParamZeroPoint],
weights_file_handle_->Write(
operation.zero_point_operand_id,
*constant_operands_->at(operation.zero_point_operand_id)))
*constant_operands_->at(operation.zero_point_operand_id),
is_scalar_scale ? base::span<const uint32_t>{}
: base::span<const uint32_t>{input_dimensions[axis]}))
ASSIGN_OR_RETURN((*op->mutable_attributes())[kOpParamScale],
weights_file_handle_->Write(
operation.scale_operand_id,
*constant_operands_->at(operation.scale_operand_id)))
ASSIGN_OR_RETURN(
(*op->mutable_attributes())[kOpParamScale],
weights_file_handle_->Write(
operation.scale_operand_id,
*constant_operands_->at(operation.scale_operand_id),
is_scalar_scale ? base::span<const uint32_t>{}
: base::span<const uint32_t>{input_dimensions[axis]}))
int32_t axis = 0;
if (!scale_operand_info.dimensions.empty()) {
axis =
base::checked_cast<int32_t>(input_operand_info.dimensions.size() - 1);
}
(*op->mutable_attributes())[kOpParamAxis] = CreateScalarImmediateValue(axis);
(*op->mutable_attributes())[kOpParamAxis] =
CreateScalarImmediateValue(base::checked_cast<int32_t>(axis));
if (input_needs_reshape) {
if (input_operand_info.dimensions.empty()) {
ASSIGN_OR_RETURN(
uint64_t output_operand_id,
GenerateInternalOperandInfo(
@ -2574,6 +2590,128 @@ GraphBuilderCoreml::AddOperationForDequantizeLinearConstBlockwise(
return base::ok();
}
[[nodiscard]] base::expected<void, mojom::ErrorPtr>
GraphBuilderCoreml::AddOperationForDequantizeLinearEmulate(
const mojom::DequantizeLinear& operation,
CoreML::Specification::MILSpec::Block& block) {
const OperandInfo& input_operand_info =
GetOperandInfo(operation.input_operand_id);
const OperandInfo& scale_operand_info =
GetOperandInfo(operation.scale_operand_id);
const OperandInfo& zero_point_operand_info =
GetOperandInfo(operation.zero_point_operand_id);
// cast(zero_point, scale_type)
base::span<const uint32_t> scale_dimensions = scale_operand_info.dimensions;
base::span<const uint32_t> input_dimensions = input_operand_info.dimensions;
uint64_t scale_operand_id = operation.scale_operand_id;
uint64_t zero_point_operand_id = operation.zero_point_operand_id;
ASSIGN_OR_RETURN(
zero_point_operand_id,
GenerateInternalOperandInfo(scale_operand_info.mil_data_type,
zero_point_operand_info.dimensions));
RETURN_IF_ERROR(AddOperationForCast(operation.zero_point_operand_id,
zero_point_operand_id, block));
// When zero_point and scale on a dimension is not
// input_dimension or 1, this is a blockwise dequantization, the zero_point
// and scale need to be expanded.
for (size_t i = 0; i < scale_dimensions.size(); ++i) {
uint32_t scale_vector_size = scale_dimensions[i];
size_t current_axis = input_dimensions.size() + i - scale_dimensions.size();
if (scale_vector_size != 1 &&
scale_vector_size != input_dimensions[current_axis]) {
// For blockwise dequantization we need to expand the shape by 1 during
// `ExpandForBlockwise`, so the original shape needs to be <=4.
if (scale_dimensions.size() > 4) {
return NewNotSupportedError(
"Unsupported rank for dequantizeLinear argument scale. It should "
"be between 0 and 4 for blockwise dequantization.");
}
CHECK_EQ(input_dimensions[current_axis] % scale_vector_size, 0u);
const int32_t repetitions =
input_dimensions[current_axis] / scale_vector_size;
uint64_t prev_scale = scale_operand_id;
ASSIGN_OR_RETURN(scale_operand_id,
ExpandForBlockwise(prev_scale, i, repetitions, block));
uint64_t prev_zero_point = zero_point_operand_id;
ASSIGN_OR_RETURN(
zero_point_operand_id,
ExpandForBlockwise(prev_zero_point, i, repetitions, block));
}
}
// `output = (input - zeroPoint) * scale`.
ASSIGN_OR_RETURN(uint64_t casted_input,
GenerateInternalOperandInfo(scale_operand_info.mil_data_type,
input_operand_info.dimensions));
RETURN_IF_ERROR(
AddOperationForCast(operation.input_operand_id, casted_input, block));
ASSIGN_OR_RETURN(uint64_t minus_zero_point,
GenerateInternalOperandInfo(scale_operand_info.mil_data_type,
input_operand_info.dimensions));
RETURN_IF_ERROR(AddOperationForElementwiseBinary(
casted_input, zero_point_operand_id, minus_zero_point,
mojom::ElementWiseBinary::Kind::kSub, block));
RETURN_IF_ERROR(AddOperationForElementwiseBinary(
minus_zero_point, scale_operand_id, operation.output_operand_id,
mojom::ElementWiseBinary::Kind::kMul, block));
return base::ok();
}
[[nodiscard]] base::expected<uint64_t, mojom::ErrorPtr>
GraphBuilderCoreml::ExpandForBlockwise(
uint64_t input_operand_id,
size_t repetition_axis,
int32_t repetitions,
CoreML::Specification::MILSpec::Block& block) {
const OperandInfo& input_operand_info = GetOperandInfo(input_operand_id);
base::span<const uint32_t> dimensions = input_operand_info.dimensions;
base::FixedArray<uint32_t> reshaped_dimensions(dimensions.size() + 1);
// `tile` repeats values for the whole dimension, but we want repetitions for
// each individual value, this is achieved by inserting dimension of 1 to be
// tiled, then reshape back.
auto [reshaped_dimensions_first, reshaped_dimensions_last] =
base::span(reshaped_dimensions).split_at(repetition_axis + 1);
auto [dimensions_first, dimensions_last] =
dimensions.split_at(repetition_axis + 1);
reshaped_dimensions_first.copy_from(dimensions_first);
reshaped_dimensions_last[0] = 1;
reshaped_dimensions_last.subspan(1u).copy_from(dimensions_last);
uint64_t prev_operand = input_operand_id;
ASSIGN_OR_RETURN(input_operand_id,
GenerateInternalOperandInfo(input_operand_info.mil_data_type,
reshaped_dimensions));
RETURN_IF_ERROR(
AddOperationForReshape(prev_operand, input_operand_id, block));
base::FixedArray<uint32_t> tile_dimensions = reshaped_dimensions;
tile_dimensions[repetition_axis + 1] = repetitions;
prev_operand = input_operand_id;
ASSIGN_OR_RETURN(input_operand_id,
GenerateInternalOperandInfo(input_operand_info.mil_data_type,
tile_dimensions));
base::FixedArray<int32_t> repetitions_for_tile(reshaped_dimensions.size(), 1);
repetitions_for_tile[repetition_axis + 1] = repetitions;
RETURN_IF_ERROR(AddOperationForTile(prev_operand, input_operand_id,
repetitions_for_tile, block));
std::vector<uint32_t> output_dimensions(input_operand_info.dimensions);
output_dimensions[repetition_axis] =
dimensions[repetition_axis] * repetitions;
ASSIGN_OR_RETURN(uint64_t output_operand_id,
GenerateInternalOperandInfo(input_operand_info.mil_data_type,
output_dimensions));
RETURN_IF_ERROR(
AddOperationForReshape(input_operand_id, output_operand_id, block));
return output_operand_id;
}
base::expected<void, mojom::ErrorPtr>
GraphBuilderCoreml::AddOperationForElementwiseBinary(
std::variant<uint64_t, CoreML::Specification::MILSpec::Value> lhs_operand,
@ -5127,27 +5265,35 @@ GraphBuilderCoreml::AddOperationForSplit(
[[nodiscard]] base::expected<void, mojom::ErrorPtr>
GraphBuilderCoreml::AddOperationForTile(
const mojom::Tile& operation,
uint64_t input_operand_id,
uint64_t output_operand_id,
base::span<const int32_t> repetitions,
CoreML::Specification::MILSpec::Block& block) {
const OperandInfo& input_operand_info =
GetOperandInfo(operation.input_operand_id);
const OperandInfo& input_operand_info = GetOperandInfo(input_operand_id);
CHECK(context_properties_.data_type_limits.tile_input.data_types.Has(
MILDataTypeToOperandType(input_operand_info.mil_data_type)));
CoreML::Specification::MILSpec::Operation* op = block.add_operations();
op->set_type(kOpTileTypeName);
RETURN_IF_ERROR(SetInputFromOperand(*op->mutable_inputs(), kOpParamX,
operation.input_operand_id));
RETURN_IF_ERROR(
SetInputFromOperand(*op->mutable_inputs(), kOpParamX, input_operand_id));
// CoreML expects repetitions to be vector of int32_t.
SetInputWithValue(
*op->mutable_inputs(), kOpParamReps,
Create1DTensorImmediateValue<int32_t>(Ui32ToI32(operation.repetitions)));
SetInputWithValue(*op->mutable_inputs(), kOpParamReps,
Create1DTensorImmediateValue<int32_t>(repetitions));
PopulateNamedValueType(operation.output_operand_id, *op->add_outputs());
PopulateNamedValueType(output_operand_id, *op->add_outputs());
return base::ok();
}
[[nodiscard]] base::expected<void, mojom::ErrorPtr>
GraphBuilderCoreml::AddOperationForTile(
const mojom::Tile& operation,
CoreML::Specification::MILSpec::Block& block) {
return AddOperationForTile(operation.input_operand_id,
operation.output_operand_id,
Ui32ToI32(operation.repetitions), block);
}
[[nodiscard]] base::expected<void, mojom::ErrorPtr>
GraphBuilderCoreml::AddOperationForTranspose(
uint64_t input_operand_id,

@ -310,12 +310,25 @@ class GraphBuilderCoreml {
[[nodiscard]] base::expected<void, mojom::ErrorPtr>
AddOperationForDequantizeLinearConst(
const mojom::DequantizeLinear& operation,
size_t axis,
bool is_scalar_scale,
CoreML::Specification::MILSpec::Block& block);
[[nodiscard]] base::expected<void, mojom::ErrorPtr>
AddOperationForDequantizeLinearConstBlockwise(
const mojom::DequantizeLinear& operation,
CoreML::Specification::MILSpec::Block& block);
[[nodiscard]] base::expected<void, mojom::ErrorPtr>
AddOperationForDequantizeLinearEmulate(
const mojom::DequantizeLinear& operation,
CoreML::Specification::MILSpec::Block& block);
// Expand for given `repetition` on `axis` for blockwise (de)quantization.
[[nodiscard]] base::expected<uint64_t, mojom::ErrorPtr> ExpandForBlockwise(
uint64_t input_operand_id,
size_t repetition_axis,
int32_t repetitions,
CoreML::Specification::MILSpec::Block& block);
[[nodiscard]] base::expected<void, mojom::ErrorPtr>
AddOperationForElementwiseBinary(
std::variant<uint64_t, CoreML::Specification::MILSpec::Value> lhs_operand,
std::variant<uint64_t, CoreML::Specification::MILSpec::Value> rhs_operand,
@ -499,6 +512,11 @@ class GraphBuilderCoreml {
[[nodiscard]] base::expected<void, mojom::ErrorPtr> AddOperationForSplit(
const mojom::Split& operation,
CoreML::Specification::MILSpec::Block& block);
[[nodiscard]] base::expected<void, mojom::ErrorPtr> AddOperationForTile(
uint64_t input_operand_id,
uint64_t output_operand_id,
base::span<const int32_t> repetitions,
CoreML::Specification::MILSpec::Block& block);
[[nodiscard]] base::expected<void, mojom::ErrorPtr> AddOperationForTile(
const mojom::Tile& operation,
CoreML::Specification::MILSpec::Block& block);

@ -619,6 +619,43 @@ const dequantizeLinearTests = [
}
}
},
{
'name': 'dequantizeLinear int32 1D tensor with float32 scalar scale',
'graph': {
'inputs': {
'dequantizeLinearInput': {
'data': [12345, 23946213],
'descriptor': {shape: [2], dataType: 'int32'},
'constant': false
},
'dequantizeLinearScale': {
'data': [1.1202747821807861, 0.2800687253475189],
'descriptor': {shape: [2], dataType: 'float32'},
'constant': true
},
'dequantizeLinearZeroPoint': {
'data': [32345, -2445234],
'descriptor': {shape: [2], dataType: 'int32'},
'constant': true
}
},
'operators': [{
'name': 'dequantizeLinear',
'arguments': [
{'input': 'dequantizeLinearInput'},
{'scale': 'dequantizeLinearScale'},
{'zeroPoint': 'dequantizeLinearZeroPoint'}
],
'outputs': 'dequantizeLinearOutput'
}],
'expectedOutputs': {
'dequantizeLinearOutput': {
'data': [-22405.495643615723, 7391418.921366602],
'descriptor': {shape: [2], dataType: 'float32'}
}
}
}
},
];
if (navigator.ml) {

@ -1,23 +1,17 @@
This is a testharness.js-based test.
[FAIL] dequantizeLinear uint8 1D constant tensor with implicit block_size = 2.
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported options to dequantizeLinear. The size of 'scale' must be equal to the size of the input's last dimension."
[FAIL] dequantizeLinear int8 4D constant tensor broadcasting scale and zeroPoint
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'dequantizeLinear' on 'MLGraphBuilder': Unsupported rank 2 for argument zeroPoint (must be at most 1)."
[FAIL] dequantizeLinear int8 4D constant tensor with block_size = [3, 2]
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'dequantizeLinear' on 'MLGraphBuilder': Unsupported rank 2 for argument zeroPoint (must be at most 1)."
[FAIL] dequantizeLinear uint4 1D tensor with even input size
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'dequantizeLinear' on 'MLGraphBuilder': Unsupported data type uint4 for argument input, must be one of [int8, uint8]."
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'dequantizeLinear' on 'MLGraphBuilder': Unsupported data type uint4 for argument input, must be one of [int32, uint32, int8, uint8]."
[FAIL] dequantizeLinear uint4 1D tensor with odd input size
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'dequantizeLinear' on 'MLGraphBuilder': Unsupported data type uint4 for argument input, must be one of [int8, uint8]."
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'dequantizeLinear' on 'MLGraphBuilder': Unsupported data type uint4 for argument input, must be one of [int32, uint32, int8, uint8]."
[FAIL] dequantizeLinear uint4 4D constant tensor broadcasting zeroPoint
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'dequantizeLinear' on 'MLGraphBuilder': Unsupported data type uint4 for argument input, must be one of [int8, uint8]."
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'dequantizeLinear' on 'MLGraphBuilder': Unsupported data type uint4 for argument input, must be one of [int32, uint32, int8, uint8]."
[FAIL] dequantizeLinear uint4 3D input with block_size = [1, 1, 2]
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'dequantizeLinear' on 'MLGraphBuilder': Unsupported data type uint4 for argument input, must be one of [int8, uint8]."
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'dequantizeLinear' on 'MLGraphBuilder': Unsupported data type uint4 for argument input, must be one of [int32, uint32, int8, uint8]."
[FAIL] dequantizeLinear int4 1D tensor with even size
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'dequantizeLinear' on 'MLGraphBuilder': Unsupported data type int4 for argument input, must be one of [int8, uint8]."
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'dequantizeLinear' on 'MLGraphBuilder': Unsupported data type int4 for argument input, must be one of [int32, uint32, int8, uint8]."
[FAIL] dequantizeLinear int4 1D tensor with odd size
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'dequantizeLinear' on 'MLGraphBuilder': Unsupported data type int4 for argument input, must be one of [int8, uint8]."
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'dequantizeLinear' on 'MLGraphBuilder': Unsupported data type int4 for argument input, must be one of [int32, uint32, int8, uint8]."
[FAIL] per-tensor dequantizeLinear for int4 4D constant
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'dequantizeLinear' on 'MLGraphBuilder': Unsupported data type int4 for argument input, must be one of [int8, uint8]."
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'dequantizeLinear' on 'MLGraphBuilder': Unsupported data type int4 for argument input, must be one of [int32, uint32, int8, uint8]."
Harness: the test ran to completion.

@ -1,31 +0,0 @@
This is a testharness.js-based test.
[FAIL] batchNormalization default + relu
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + leakyRelu
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + sigmoid
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + clamp
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + prelu
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + elu
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization options.axis=0 + gelu
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported axis for batchNormalization. It must be the channel dimension."
[FAIL] batchNormalization default + hardSigmoid
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + hardSwish
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + linear
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization options.axis=0 + softplus
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported axis for batchNormalization. It must be the channel dimension."
[FAIL] batchNormalization default + softsign
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization options.axis=0 + softmax
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported axis for batchNormalization. It must be the channel dimension."
[FAIL] quantized conv2d
promise_test: Unhandled rejection with value: object "TypeError: Unsupported data type, input 'input' data type int32 must be one of [int8,uint8]."
Harness: the test ran to completion.

@ -1,31 +0,0 @@
This is a testharness.js-based test.
[FAIL] batchNormalization default + relu
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + leakyRelu
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + sigmoid
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + clamp
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + prelu
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + elu
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization options.axis=0 + gelu
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported axis for batchNormalization. It must be the channel dimension."
[FAIL] batchNormalization default + hardSigmoid
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + hardSwish
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + linear
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization options.axis=0 + softplus
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported axis for batchNormalization. It must be the channel dimension."
[FAIL] batchNormalization default + softsign
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization options.axis=0 + softmax
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported axis for batchNormalization. It must be the channel dimension."
[FAIL] quantized conv2d
promise_test: Unhandled rejection with value: object "TypeError: Unsupported data type, input 'input' data type int32 must be one of [int8,uint8]."
Harness: the test ran to completion.

@ -1,31 +0,0 @@
This is a testharness.js-based test.
[FAIL] batchNormalization default + relu
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + leakyRelu
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + sigmoid
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + clamp
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + prelu
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + elu
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization options.axis=0 + gelu
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported axis for batchNormalization. It must be the channel dimension."
[FAIL] batchNormalization default + hardSigmoid
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + hardSwish
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + linear
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization options.axis=0 + softplus
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported axis for batchNormalization. It must be the channel dimension."
[FAIL] batchNormalization default + softsign
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization options.axis=0 + softmax
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported axis for batchNormalization. It must be the channel dimension."
[FAIL] quantized conv2d
promise_test: Unhandled rejection with value: object "TypeError: Unsupported data type, input 'input' data type int32 must be one of [int8,uint8]."
Harness: the test ran to completion.

@ -1,31 +0,0 @@
This is a testharness.js-based test.
[FAIL] batchNormalization default + relu
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + leakyRelu
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + sigmoid
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + clamp
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + prelu
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + elu
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization options.axis=0 + gelu
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported axis for batchNormalization. It must be the channel dimension."
[FAIL] batchNormalization default + hardSigmoid
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + hardSwish
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + linear
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization options.axis=0 + softplus
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported axis for batchNormalization. It must be the channel dimension."
[FAIL] batchNormalization default + softsign
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization options.axis=0 + softmax
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported axis for batchNormalization. It must be the channel dimension."
[FAIL] quantized conv2d
promise_test: Unhandled rejection with value: object "TypeError: Unsupported data type, input 'input' data type int32 must be one of [int8,uint8]."
Harness: the test ran to completion.

@ -1,23 +1,17 @@
This is a testharness.js-based test.
[FAIL] dequantizeLinear uint8 1D constant tensor with implicit block_size = 2.
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported options to dequantizeLinear. The size of 'scale' must be equal to the size of the input's last dimension."
[FAIL] dequantizeLinear int8 4D constant tensor broadcasting scale and zeroPoint
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'dequantizeLinear' on 'MLGraphBuilder': Unsupported rank 2 for argument zeroPoint (must be at most 1)."
[FAIL] dequantizeLinear int8 4D constant tensor with block_size = [3, 2]
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'dequantizeLinear' on 'MLGraphBuilder': Unsupported rank 2 for argument zeroPoint (must be at most 1)."
[FAIL] dequantizeLinear uint4 1D tensor with even input size
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'dequantizeLinear' on 'MLGraphBuilder': Unsupported data type uint4 for argument input, must be one of [int8, uint8]."
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'dequantizeLinear' on 'MLGraphBuilder': Unsupported data type uint4 for argument input, must be one of [int32, uint32, int8, uint8]."
[FAIL] dequantizeLinear uint4 1D tensor with odd input size
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'dequantizeLinear' on 'MLGraphBuilder': Unsupported data type uint4 for argument input, must be one of [int8, uint8]."
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'dequantizeLinear' on 'MLGraphBuilder': Unsupported data type uint4 for argument input, must be one of [int32, uint32, int8, uint8]."
[FAIL] dequantizeLinear uint4 4D constant tensor broadcasting zeroPoint
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'dequantizeLinear' on 'MLGraphBuilder': Unsupported data type uint4 for argument input, must be one of [int8, uint8]."
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'dequantizeLinear' on 'MLGraphBuilder': Unsupported data type uint4 for argument input, must be one of [int32, uint32, int8, uint8]."
[FAIL] dequantizeLinear uint4 3D input with block_size = [1, 1, 2]
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'dequantizeLinear' on 'MLGraphBuilder': Unsupported data type uint4 for argument input, must be one of [int8, uint8]."
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'dequantizeLinear' on 'MLGraphBuilder': Unsupported data type uint4 for argument input, must be one of [int32, uint32, int8, uint8]."
[FAIL] dequantizeLinear int4 1D tensor with even size
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'dequantizeLinear' on 'MLGraphBuilder': Unsupported data type int4 for argument input, must be one of [int8, uint8]."
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'dequantizeLinear' on 'MLGraphBuilder': Unsupported data type int4 for argument input, must be one of [int32, uint32, int8, uint8]."
[FAIL] dequantizeLinear int4 1D tensor with odd size
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'dequantizeLinear' on 'MLGraphBuilder': Unsupported data type int4 for argument input, must be one of [int8, uint8]."
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'dequantizeLinear' on 'MLGraphBuilder': Unsupported data type int4 for argument input, must be one of [int32, uint32, int8, uint8]."
[FAIL] per-tensor dequantizeLinear for int4 4D constant
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'dequantizeLinear' on 'MLGraphBuilder': Unsupported data type int4 for argument input, must be one of [int8, uint8]."
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'dequantizeLinear' on 'MLGraphBuilder': Unsupported data type int4 for argument input, must be one of [int32, uint32, int8, uint8]."
Harness: the test ran to completion.

@ -1,31 +0,0 @@
This is a testharness.js-based test.
[FAIL] batchNormalization default + relu
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + leakyRelu
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + sigmoid
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + clamp
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + prelu
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + elu
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization options.axis=0 + gelu
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported axis for batchNormalization. It must be the channel dimension."
[FAIL] batchNormalization default + hardSigmoid
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + hardSwish
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + linear
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization options.axis=0 + softplus
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported axis for batchNormalization. It must be the channel dimension."
[FAIL] batchNormalization default + softsign
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization options.axis=0 + softmax
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported axis for batchNormalization. It must be the channel dimension."
[FAIL] quantized conv2d
promise_test: Unhandled rejection with value: object "TypeError: Unsupported data type, input 'input' data type int32 must be one of [int8,uint8]."
Harness: the test ran to completion.

@ -1,31 +0,0 @@
This is a testharness.js-based test.
[FAIL] batchNormalization default + relu
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + leakyRelu
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + sigmoid
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + clamp
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + prelu
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + elu
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization options.axis=0 + gelu
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported axis for batchNormalization. It must be the channel dimension."
[FAIL] batchNormalization default + hardSigmoid
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + hardSwish
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + linear
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization options.axis=0 + softplus
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported axis for batchNormalization. It must be the channel dimension."
[FAIL] batchNormalization default + softsign
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization options.axis=0 + softmax
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported axis for batchNormalization. It must be the channel dimension."
[FAIL] quantized conv2d
promise_test: Unhandled rejection with value: object "TypeError: Unsupported data type, input 'input' data type int32 must be one of [int8,uint8]."
Harness: the test ran to completion.

@ -1,31 +0,0 @@
This is a testharness.js-based test.
[FAIL] batchNormalization default + relu
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + leakyRelu
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + sigmoid
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + clamp
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + prelu
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + elu
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization options.axis=0 + gelu
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported axis for batchNormalization. It must be the channel dimension."
[FAIL] batchNormalization default + hardSigmoid
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + hardSwish
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + linear
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization options.axis=0 + softplus
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported axis for batchNormalization. It must be the channel dimension."
[FAIL] batchNormalization default + softsign
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization options.axis=0 + softmax
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported axis for batchNormalization. It must be the channel dimension."
[FAIL] quantized conv2d
promise_test: Unhandled rejection with value: object "TypeError: Unsupported data type, input 'input' data type int32 must be one of [int8,uint8]."
Harness: the test ran to completion.

@ -1,31 +0,0 @@
This is a testharness.js-based test.
[FAIL] batchNormalization default + relu
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + leakyRelu
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + sigmoid
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + clamp
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + prelu
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + elu
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization options.axis=0 + gelu
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported axis for batchNormalization. It must be the channel dimension."
[FAIL] batchNormalization default + hardSigmoid
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + hardSwish
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + linear
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization options.axis=0 + softplus
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported axis for batchNormalization. It must be the channel dimension."
[FAIL] batchNormalization default + softsign
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization options.axis=0 + softmax
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported axis for batchNormalization. It must be the channel dimension."
[FAIL] quantized conv2d
promise_test: Unhandled rejection with value: object "TypeError: Unsupported data type, input 'input' data type int32 must be one of [int8,uint8]."
Harness: the test ran to completion.

@ -1,23 +1,17 @@
This is a testharness.js-based test.
[FAIL] dequantizeLinear uint8 1D constant tensor with implicit block_size = 2.
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported options to dequantizeLinear. The size of 'scale' must be equal to the size of the input's last dimension."
[FAIL] dequantizeLinear int8 4D constant tensor broadcasting scale and zeroPoint
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'dequantizeLinear' on 'MLGraphBuilder': Unsupported rank 2 for argument zeroPoint (must be at most 1)."
[FAIL] dequantizeLinear int8 4D constant tensor with block_size = [3, 2]
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'dequantizeLinear' on 'MLGraphBuilder': Unsupported rank 2 for argument zeroPoint (must be at most 1)."
[FAIL] dequantizeLinear uint4 1D tensor with even input size
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'dequantizeLinear' on 'MLGraphBuilder': Unsupported data type uint4 for argument input, must be one of [int8, uint8]."
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'dequantizeLinear' on 'MLGraphBuilder': Unsupported data type uint4 for argument input, must be one of [int32, uint32, int8, uint8]."
[FAIL] dequantizeLinear uint4 1D tensor with odd input size
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'dequantizeLinear' on 'MLGraphBuilder': Unsupported data type uint4 for argument input, must be one of [int8, uint8]."
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'dequantizeLinear' on 'MLGraphBuilder': Unsupported data type uint4 for argument input, must be one of [int32, uint32, int8, uint8]."
[FAIL] dequantizeLinear uint4 4D constant tensor broadcasting zeroPoint
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'dequantizeLinear' on 'MLGraphBuilder': Unsupported data type uint4 for argument input, must be one of [int8, uint8]."
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'dequantizeLinear' on 'MLGraphBuilder': Unsupported data type uint4 for argument input, must be one of [int32, uint32, int8, uint8]."
[FAIL] dequantizeLinear uint4 3D input with block_size = [1, 1, 2]
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'dequantizeLinear' on 'MLGraphBuilder': Unsupported data type uint4 for argument input, must be one of [int8, uint8]."
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'dequantizeLinear' on 'MLGraphBuilder': Unsupported data type uint4 for argument input, must be one of [int32, uint32, int8, uint8]."
[FAIL] dequantizeLinear int4 1D tensor with even size
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'dequantizeLinear' on 'MLGraphBuilder': Unsupported data type int4 for argument input, must be one of [int8, uint8]."
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'dequantizeLinear' on 'MLGraphBuilder': Unsupported data type int4 for argument input, must be one of [int32, uint32, int8, uint8]."
[FAIL] dequantizeLinear int4 1D tensor with odd size
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'dequantizeLinear' on 'MLGraphBuilder': Unsupported data type int4 for argument input, must be one of [int8, uint8]."
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'dequantizeLinear' on 'MLGraphBuilder': Unsupported data type int4 for argument input, must be one of [int32, uint32, int8, uint8]."
[FAIL] per-tensor dequantizeLinear for int4 4D constant
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'dequantizeLinear' on 'MLGraphBuilder': Unsupported data type int4 for argument input, must be one of [int8, uint8]."
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'dequantizeLinear' on 'MLGraphBuilder': Unsupported data type int4 for argument input, must be one of [int32, uint32, int8, uint8]."
Harness: the test ran to completion.

@ -1,31 +0,0 @@
This is a testharness.js-based test.
[FAIL] batchNormalization default + relu
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + leakyRelu
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + sigmoid
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + clamp
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + prelu
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + elu
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization options.axis=0 + gelu
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported axis for batchNormalization. It must be the channel dimension."
[FAIL] batchNormalization default + hardSigmoid
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + hardSwish
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + linear
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization options.axis=0 + softplus
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported axis for batchNormalization. It must be the channel dimension."
[FAIL] batchNormalization default + softsign
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization options.axis=0 + softmax
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported axis for batchNormalization. It must be the channel dimension."
[FAIL] quantized conv2d
promise_test: Unhandled rejection with value: object "TypeError: Unsupported data type, input 'input' data type int32 must be one of [int8,uint8]."
Harness: the test ran to completion.

@ -1,31 +0,0 @@
This is a testharness.js-based test.
[FAIL] batchNormalization default + relu
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + leakyRelu
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + sigmoid
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + clamp
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + prelu
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + elu
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization options.axis=0 + gelu
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported axis for batchNormalization. It must be the channel dimension."
[FAIL] batchNormalization default + hardSigmoid
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + hardSwish
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + linear
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization options.axis=0 + softplus
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported axis for batchNormalization. It must be the channel dimension."
[FAIL] batchNormalization default + softsign
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization options.axis=0 + softmax
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported axis for batchNormalization. It must be the channel dimension."
[FAIL] quantized conv2d
promise_test: Unhandled rejection with value: object "TypeError: Unsupported data type, input 'input' data type int32 must be one of [int8,uint8]."
Harness: the test ran to completion.

@ -1,31 +0,0 @@
This is a testharness.js-based test.
[FAIL] batchNormalization default + relu
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + leakyRelu
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + sigmoid
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + clamp
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + prelu
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + elu
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization options.axis=0 + gelu
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported axis for batchNormalization. It must be the channel dimension."
[FAIL] batchNormalization default + hardSigmoid
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + hardSwish
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + linear
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization options.axis=0 + softplus
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported axis for batchNormalization. It must be the channel dimension."
[FAIL] batchNormalization default + softsign
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization options.axis=0 + softmax
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported axis for batchNormalization. It must be the channel dimension."
[FAIL] quantized conv2d
promise_test: Unhandled rejection with value: object "TypeError: Unsupported data type, input 'input' data type int32 must be one of [int8,uint8]."
Harness: the test ran to completion.

@ -1,31 +0,0 @@
This is a testharness.js-based test.
[FAIL] batchNormalization default + relu
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + leakyRelu
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + sigmoid
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + clamp
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + prelu
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + elu
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization options.axis=0 + gelu
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported axis for batchNormalization. It must be the channel dimension."
[FAIL] batchNormalization default + hardSigmoid
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + hardSwish
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization default + linear
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization options.axis=0 + softplus
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported axis for batchNormalization. It must be the channel dimension."
[FAIL] batchNormalization default + softsign
promise_test: Unhandled rejection with value: object "TypeError: Failed to execute 'batchNormalization' on 'MLGraphBuilder': Unsupported rank 2 for argument input (must be at least 3)."
[FAIL] batchNormalization options.axis=0 + softmax
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported axis for batchNormalization. It must be the channel dimension."
[FAIL] quantized conv2d
promise_test: Unhandled rejection with value: object "TypeError: Unsupported data type, input 'input' data type int32 must be one of [int8,uint8]."
Harness: the test ran to completion.

@ -26,6 +26,6 @@ This is a testharness.js-based test.
[FAIL] batchNormalization options.axis=0 + softmax
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported axis for batchNormalization. It must be the channel dimension."
[FAIL] quantized conv2d
promise_test: Unhandled rejection with value: object "TypeError: Unsupported data type, input 'input' data type int32 must be one of [int8,uint8,int4,uint4]."
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported options to quantizeLinear. The size of 'scale' must be equal to the size of the input's last dimension."
Harness: the test ran to completion.

@ -26,6 +26,6 @@ This is a testharness.js-based test.
[FAIL] batchNormalization options.axis=0 + softmax
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported axis for batchNormalization. It must be the channel dimension."
[FAIL] quantized conv2d
promise_test: Unhandled rejection with value: object "TypeError: Unsupported data type, input 'input' data type int32 must be one of [int8,uint8,int4,uint4]."
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported options to quantizeLinear. The size of 'scale' must be equal to the size of the input's last dimension."
Harness: the test ran to completion.

@ -26,6 +26,6 @@ This is a testharness.js-based test.
[FAIL] batchNormalization options.axis=0 + softmax
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported axis for batchNormalization. It must be the channel dimension."
[FAIL] quantized conv2d
promise_test: Unhandled rejection with value: object "TypeError: Unsupported data type, input 'input' data type int32 must be one of [int8,uint8,int4,uint4]."
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported options to quantizeLinear. The size of 'scale' must be equal to the size of the input's last dimension."
Harness: the test ran to completion.

@ -26,6 +26,6 @@ This is a testharness.js-based test.
[FAIL] batchNormalization options.axis=0 + softmax
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported axis for batchNormalization. It must be the channel dimension."
[FAIL] quantized conv2d
promise_test: Unhandled rejection with value: object "TypeError: Unsupported data type, input 'input' data type int32 must be one of [int8,uint8,int4,uint4]."
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported options to quantizeLinear. The size of 'scale' must be equal to the size of the input's last dimension."
Harness: the test ran to completion.

@ -26,6 +26,6 @@ This is a testharness.js-based test.
[FAIL] batchNormalization options.axis=0 + softmax
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported axis for batchNormalization. It must be the channel dimension."
[FAIL] quantized conv2d
promise_test: Unhandled rejection with value: object "TypeError: Unsupported data type, input 'input' data type int32 must be one of [int8,uint8,int4,uint4]."
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported options to quantizeLinear. The size of 'scale' must be equal to the size of the input's last dimension."
Harness: the test ran to completion.

@ -26,6 +26,6 @@ This is a testharness.js-based test.
[FAIL] batchNormalization options.axis=0 + softmax
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported axis for batchNormalization. It must be the channel dimension."
[FAIL] quantized conv2d
promise_test: Unhandled rejection with value: object "TypeError: Unsupported data type, input 'input' data type int32 must be one of [int8,uint8,int4,uint4]."
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported options to quantizeLinear. The size of 'scale' must be equal to the size of the input's last dimension."
Harness: the test ran to completion.

@ -26,6 +26,6 @@ This is a testharness.js-based test.
[FAIL] batchNormalization options.axis=0 + softmax
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported axis for batchNormalization. It must be the channel dimension."
[FAIL] quantized conv2d
promise_test: Unhandled rejection with value: object "TypeError: Unsupported data type, input 'input' data type int32 must be one of [int8,uint8,int4,uint4]."
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported options to quantizeLinear. The size of 'scale' must be equal to the size of the input's last dimension."
Harness: the test ran to completion.

@ -26,6 +26,6 @@ This is a testharness.js-based test.
[FAIL] batchNormalization options.axis=0 + softmax
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported axis for batchNormalization. It must be the channel dimension."
[FAIL] quantized conv2d
promise_test: Unhandled rejection with value: object "TypeError: Unsupported data type, input 'input' data type int32 must be one of [int8,uint8,int4,uint4]."
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported options to quantizeLinear. The size of 'scale' must be equal to the size of the input's last dimension."
Harness: the test ran to completion.

@ -26,6 +26,6 @@ This is a testharness.js-based test.
[FAIL] batchNormalization options.axis=0 + softmax
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported axis for batchNormalization. It must be the channel dimension."
[FAIL] quantized conv2d
promise_test: Unhandled rejection with value: object "TypeError: Unsupported data type, input 'input' data type int32 must be one of [int8,uint8,int4,uint4]."
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported options to quantizeLinear. The size of 'scale' must be equal to the size of the input's last dimension."
Harness: the test ran to completion.

@ -26,6 +26,6 @@ This is a testharness.js-based test.
[FAIL] batchNormalization options.axis=0 + softmax
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported axis for batchNormalization. It must be the channel dimension."
[FAIL] quantized conv2d
promise_test: Unhandled rejection with value: object "TypeError: Unsupported data type, input 'input' data type int32 must be one of [int8,uint8,int4,uint4]."
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported options to quantizeLinear. The size of 'scale' must be equal to the size of the input's last dimension."
Harness: the test ran to completion.

@ -26,6 +26,6 @@ This is a testharness.js-based test.
[FAIL] batchNormalization options.axis=0 + softmax
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported axis for batchNormalization. It must be the channel dimension."
[FAIL] quantized conv2d
promise_test: Unhandled rejection with value: object "TypeError: Unsupported data type, input 'input' data type int32 must be one of [int8,uint8,int4,uint4]."
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported options to quantizeLinear. The size of 'scale' must be equal to the size of the input's last dimension."
Harness: the test ran to completion.

@ -26,6 +26,6 @@ This is a testharness.js-based test.
[FAIL] batchNormalization options.axis=0 + softmax
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported axis for batchNormalization. It must be the channel dimension."
[FAIL] quantized conv2d
promise_test: Unhandled rejection with value: object "TypeError: Unsupported data type, input 'input' data type int32 must be one of [int8,uint8,int4,uint4]."
promise_test: Unhandled rejection with value: object "NotSupportedError: Failed to execute 'build' on 'MLGraphBuilder': Unsupported options to quantizeLinear. The size of 'scale' must be equal to the size of the input's last dimension."
Harness: the test ran to completion.