#!/usr/bin/env python2
import argparse
import cv2
import os
import dlib
import numpy as np
np.set_printoptions(precision=2)
import openface
from matplotlib import cm
fileDir = os.path.dirname(os.path.realpath(__file__))
modelDir = os.path.join(fileDir, '..', 'models')
dlibModelDir = os.path.join(modelDir, 'dlib')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--dlibFacePredictor',
type=str,
help="Path to dlib's face predictor.",
default=os.path.join(
dlibModelDir,
"shape_predictor_68_face_landmarks.dat"))
parser.add_argument(
'--networkModel',
type=str,
help="Path to Torch network model.",
default='models/openface/nn4.v1.t7')
# Download model from:
# https://storage.cmusatyalab.org/openface-models/nn4.v1.t7
parser.add_argument('--imgDim', type=int,
help="Default image dimension.", default=96)
# parser.add_argument('--width', type=int, default=640)
# parser.add_argument('--height', type=int, default=480)
parser.add_argument('--width', type=int, default=1280)
parser.add_argument('--height', type=int, default=800)
parser.add_argument('--scale', type=int, default=1.0)
parser.add_argument('--cuda', action='store_true')
parser.add_argument('--image', type=str,help='Path of image to recognition')
args = parser.parse_args()
if (None == args.image) or (not os.path.exists(args.image)):
print '--image not set or image file not exists'
exit()
align = openface.AlignDlib(args.dlibFacePredictor)
net = openface.TorchNeuralNet(
args.networkModel,
imgDim=args.imgDim,
cuda=args.cuda)
cv2.namedWindow('video', cv2.WINDOW_NORMAL)
frame = cv2.imread(args.image)
bbs = align.getAllFaceBoundingBoxes(frame)
for i, bb in enumerate(bbs):
# landmarkIndices set "https://cmusatyalab.github.io/openface/models-and-accuracies/"
alignedFace = align.align(96, frame, bb,
landmarkIndices=openface.AlignDlib.OUTER_EYES_AND_NOSE)
rep = net.forward(alignedFace)
center = bb.center()
centerI = 0.7 * center.x * center.y / \
(args.scale * args.scale * args.width * args.height)
color_np = cm.Set1(centerI)
color_cv = list(np.multiply(color_np[:3], 255))
bl = (int(bb.left() / args.scale), int(bb.bottom() / args.scale))
tr = (int(bb.right() / args.scale), int(bb.top() / args.scale))
cv2.rectangle(frame, bl, tr, color=color_cv, thickness=3)
cv2.imshow('video', frame)
cv2.waitKey (0)
cv2.destroyAllWindows()