ubuntu 16.04 LTS
启动Eclipse Neno.3
报错"An error has occurred. See the log file
",具体如下图所示:
继续阅读ubuntu 16.04 LTS启动Eclipse Neno.3 报错"An error has occurred. See the log file"
ubuntu 16.04 LTS
启动Eclipse Neno.3
报错"An error has occurred. See the log file
",具体如下图所示:
继续阅读ubuntu 16.04 LTS启动Eclipse Neno.3 报错"An error has occurred. See the log file"
Ubuntu 16.04/14.04.5
上已经可以简化到直接用命令行来安装Nvidia CUDA
驱动了,不需要以往的繁琐操作,只是安装的版本比较老,但是目前已经足够使用了。
安装的版本目前是Nvidia CUDA 7.5(Ubuntu 16.04)/Nvidia CUDA 5.5(Ubuntu 14.04.5)
版本,最新的Nvidia CUDA 8.0
版本还是需要从Nvidia
官网下载,然后手工安装才行。
Deep learning is the new big trend in machine learning. It had many recent successes in computer vision, automatic speech recognition and natural language processing.
The goal of this blog post is to give you a hands-on introduction to deep learning. To do this, we will build a Cat/Dog image classifier using a deep learning algorithm called convolutional neural network (CNN) and a Kaggle dataset.
This post is divided into 2 main parts. The first part covers some core concepts behind deep learning, while the second part is structured in a hands-on tutorial format.
In the first part of the hands-on tutorial (section 4), we will build a Cat/Dog image classifier using a convolutional neural network from scratch. In the second part of the tutorial (section 5), we will cover an advanced technique for training convolutional neural networks called transfer learning. We will use some Python code and a popular open source deep learning framework called Caffe to build the classifier. Our classifier will be able to achieve a classification accuracy of 97%.
By the end of this post, you will understand how convolutional neural networks work, and you will get familiar with the steps and the code for building these networks.
The source code for this tutorial can be found in this github repository.
继续阅读A Practical Introduction to Deep Learning with Caffe and Python
Caffe is certainly one of the best frameworks for deep learning, if not the best.
Let’s try to put things into order, in order to get a good tutorial :).
First install Caffe following my tutorials on Ubuntu or Mac OS with Python layers activated and pycaffe path correctly set export PYTHONPATH=~/technologies/caffe/python/:$PYTHONPATH
.
继续阅读Deep learning tutorial on Caffe technology : basic commands, Python and C++ code.
更加详细的信息参考链接:Ubuntu速配指南,Ubuntu release end of life
在执行macOS Sierra (10.12.4)下Caffe通过Python接口加载binaryproto格式的均值文件的时候,最后报告错误:
这个错误发生的原因是由于memnet
提供的均值文件是256*256
的,但是提供的配置文件却是227*227
的,导致在io.py
里面的代码在进行判断的时候发生异常。调整源代码中的python/caffe/io.py
里面的代码:
调整为:
调整完成后,需要重新编译Caffe
:
macOS Sierra
(10.12.4
)下Caffe
通过Python
接口加载均值文件的时候,都是加载的.npy
格式的文件,这个格式是Python
存储的格式,跟我们经常下载到的.binaryproto
格式的均值文件是不同的,这样就导致了加载问题。
.binaryproto
是Google
的Protocol Buffer
序列化后的数据,而.npy
格式是Python
的numpy
模块序列化后的数据。
之所以会出现两种不同的存储格式,目前猜测是由于目前Python 3
不能很好的支持Protocol Buffer
导致的。
Python
下是不能直接加载.binaryproto
格式的数据的,必须进行一次转换才行,示例代码如下:
参照 macOS Sierra (10.12.3)编译Caffe 编译成功 Caffe
后,开始尝试使用 Caffe
的 Python
接口,执行如下命令:
macOS Sierra
(10.12.4
)下使用Python
操作视频,FFMPEG
是目前来说最好的一个选择,但是没有为Python
专门提供适配接口,网上搜索了比较长时间,才找到PyAV
来操作FFMPEG
。
PyAV
的文档地址在:https://mikeboers.github.io/PyAV/
代码地址在:https://github.com/mikeboers/PyAV
首先需要通过HomeBrew
安装FFMPEG
:
接下来安装PyAV
,安装方式两种:
一种是直接通过PIP
来安装:
另外一种是通过下载代码来手工安装
安装好后的例子如下:
Caffe
代码中自带一些模型的例子,这些例子在源代码的models
目录下,这些都是其他项目中用来训练的配置文件,学习的时候,我们没有必要完全自己从头到尾搭建自己的网络模型,而是直接使用例子中的模型,后期在这些模型上简单调整一下,一般可以满足大多数的需求。
下面我们以models/bvlc_alexnet
目录下的模型配置文件为例子,训练我们自己的神经网络。