macOS Sierra (10.12.4)下Caffe执行Python代码报告错误“Mean shape incompatible with input shape”

在执行macOS Sierra (10.12.4)下Caffe通过Python接口加载binaryproto格式的均值文件的时候,最后报告错误:

这个错误发生的原因是由于memnet提供的均值文件是256*256的,但是提供的配置文件却是227*227的,导致在io.py里面的代码在进行判断的时候发生异常。调整源代码中的python/caffe/io.py里面的代码:

调整为:

调整完成后,需要重新编译Caffe:

参考链接


macOS Sierra (10.12.4)下Caffe通过Python接口加载binaryproto格式的均值文件

macOS Sierra (10.12.4)下Caffe通过Python接口加载均值文件的时候,都是加载的.npy格式的文件,这个格式是Python存储的格式,跟我们经常下载到的.binaryproto格式的均值文件是不同的,这样就导致了加载问题。
.binaryprotoGoogleProtocol Buffer序列化后的数据,而.npy格式是Pythonnumpy模块序列化后的数据。

之所以会出现两种不同的存储格式,目前猜测是由于目前Python 3不能很好的支持Protocol Buffer导致的。

Python下是不能直接加载.binaryproto格式的数据的,必须进行一次转换才行,示例代码如下:

参考链接


macOS Sierra (10.12.4)编译pycaffe成功后,执行时候崩溃,错误“Segmentation fault: 11”

参照 macOS Sierra (10.12.3)编译Caffe 编译成功 Caffe 后,开始尝试使用 CaffePython 接口,执行如下命令:


编译一切成功,但是当执行

的时候,程序崩溃,提示如下内容:

继续阅读macOS Sierra (10.12.4)编译pycaffe成功后,执行时候崩溃,错误“Segmentation fault: 11”

macOS Sierra (10.12.4)下Python通过PyAV调用FFMPEG操作视频

macOS Sierra (10.12.4)下使用Python操作视频,FFMPEG是目前来说最好的一个选择,但是没有为Python专门提供适配接口,网上搜索了比较长时间,才找到PyAV来操作FFMPEG

PyAV的文档地址在:https://mikeboers.github.io/PyAV/

代码地址在:https://github.com/mikeboers/PyAV

首先需要通过HomeBrew安装FFMPEG

接下来安装PyAV,安装方式两种:

一种是直接通过PIP来安装:

另外一种是通过下载代码来手工安装

安装好后的例子如下:

macOS Sierra (10.12.4)系统上Caffe借助现有的模型训练自己的数据集

Caffe代码中自带一些模型的例子,这些例子在源代码的models目录下,这些都是其他项目中用来训练的配置文件,学习的时候,我们没有必要完全自己从头到尾搭建自己的网络模型,而是直接使用例子中的模型,后期在这些模型上简单调整一下,一般可以满足大多数的需求。

下面我们以models/bvlc_alexnet目录下的模型配置文件为例子,训练我们自己的神经网络。

继续阅读macOS Sierra (10.12.4)系统上Caffe借助现有的模型训练自己的数据集

macOS Sierra (10.12.4)优酷客户端下载后的视频文件位置

macOS Sierra (10.12.4)优酷客户端下载后的视频文件位置在:

可以在命令行下执行:

打开这个目录。

Hollow导读

本文大部分内容来源于Hollow官方文档

开发过程中会遇到这样的数据:体量算不上“大数据”,数据在变化,幅度也不大。处理这类数据的时候,一般是把数据放到内存中(容器、json、xml、RDBMS),隔断时间更新一次。

这样处理有很多局限性

  • 内存限制
  • 更新频率不能过快,造成延迟
  • 频繁的读写造成I/O、GC等

世界陷入水火,一般的套路现在主角就该出场了

Netflix推出了Hollow,它是数据的利剑,内存的盾牌,它将不JSON、不XML、少GC、高效率的解决问题,总而言之,他是人民的大救星,下面请一起走进科学,走进Hollow的内心世界。

Hollow致力于解决内存数据问题,处理的量级(将数据转为JSON)一般在GB级别,TB/PB就爱莫能助了。

快照-增量

生产的数据有两种类型,Snapshot、Delta,即全量、增量数据。大多数情况下,我们处理的是增量数据。

生产-消费者模式

一个生产者服务多个消费者,生产者生产快照和增量数据更新至BLOB(二进制大数据)文件,消费者在内存中使用数据,只读属性保证了消费的高效。生产文件到内存对开发者是透明的。

数据模型

数据模型基于一个POJO,又相当于数据库的一行。开发者只需要定义一个POJO,Hollow的API-Generator会生产这个POJO相应的消费文件。

它适用于只读数据、单个生产者、可能多个消费者的情形。Hollow实现持久化的唯一机制是利用BLOB存储,它只是一个文件存储,可能是S3、NFS、甚至一台FTP服务器。启动的时候,消费者们读取整个数据集的快照,并将数据集引导到内存中。通过增量的方法,可以保证内存中的数据集是最新的。对于每个消费者,内存中的数据备份是临时性的,如果消费者重新启动,需要从BLOB存储中重新加载快照。

实际上BLOB快照文件的格式很简单,它在很大程度上和在内存布局的结构相同,因此数据初始化主要是将BLOB的内容直接复制到内存中,这一步可以快速完成,确保了初始化的时间很短。

macOS Sierra (10.12.3)使用Eclipse IDE for C/C++ Developers结合CMake Editor编辑Linux MakeFile项目

使用macOS Sierra(10.12.3)开发C/C++项目,经常用到网上的开源项目,很多项目是直接用MakeFile来管理项目的,导致在调试,编辑项目的时候,比较麻烦,搜索了半天,才找到目前看来比较方便的方式,就是结合Eclipse IDE for C/C++ DevelopersCMake Editor的方式来进行处理。

继续阅读macOS Sierra (10.12.3)使用Eclipse IDE for C/C++ Developers结合CMake Editor编辑Linux MakeFile项目

macOS Sierra (10.12.3)利用aria2解决CUDA下载失败问题

macOS Sierra(10.12.3)上尝试下载NvidiaCUDA,但是由于国内网络问题,导致使用浏览器下载的时候,不仅慢,而且还经常失败,基本上没办法下载成功。尝试使用迅雷的话,如果不是会员,貌似也没有太多的用处。另外一个比较麻烦的问题是,Nvidia下载服务器,随着下载时间的延长,会强制限制下载速度,导致越来越慢,到最后只有若干KB的速度。
继续阅读macOS Sierra (10.12.3)利用aria2解决CUDA下载失败问题