ARM big.LITTLE 系统的软件技术
Robin Randhawa,首席工程师,2013 年 4 月
简介
移动应用已经发生了显著变化,当今的消费者更多地将智能手机应用于大部分互联生活。其中既包括高性能任务,例如网络浏览、导航和游戏,也包括那些要求不太苛刻的“始终在线,始终连接”后台任务,例如语音呼叫、社交网络和电子邮件服务。因此,移动电话已经成为很多消费者必不可少的计算设备。同时,平板电脑等新型移动设备也在重新定义计算平台,以应对消费者的需求。这一趋势为消费者创造了全新的内容互动方式,将以往只可能在固定设备上实现的应用带到移动设备上。这才是真正的智能下一代计算。
摩尔定律将如何往下发展?人们过去预测集成电路上可容纳的晶体管数目每隔 18 个月会增加一倍,直至从数千个增加至数十亿个晶体管,但如果真正审视单个处理器,却会发现它的性能增长停滞不前,因为您可以在系统中消耗的电能已经达到峰值。
对于未来的任何一款处理器,散热必然会限制其速度的大幅提高。一旦达到器件的热障,器件会融化,如果是在移动电话上,设备会开始发热,让用户感到不适。除了物理散热问题之外,能效也会变得相当低。如果调节处理器实施,使其速度逐渐加快,则其能耗将呈指数级增长,而为了增加最后这一丁点的性能,却会导致成本大幅提升。过去,尺寸增大一倍也意味着速度提高一倍,但到了现在,尺寸增大一倍却只能将速度提高几个百分点,因此出于复杂性的原因,效益不复存在,这也是单核系统的速度达到极限的原因之一。
如果您无法让单核运行更快,则必须增加核心的数量。这样做的好处还包括让每个核心能够匹配其承担的工作负载,这正是 ARM big.LITTLE™ 处理概念的用武之地。
Big.LITTLE处理技术可以解决我们当前面临的一个最大难题:扩展消费者的“始终在线,始终连接”移动体验,同时改进性能,延长电池续航时间。实现这一目标的方式是将“big”多核处理器与“LITTLE”多核处理器配合使用,根据性能要求,为适当的任务无缝选择适当的处理器。重要的是,这种动态选择对在处理器上运行的应用程序软件或中间件是透明的。 设备中采用的最新一代big.LITTLE 设计将高性能Cortex™-A15 多处理器集群与高能效Cortex-A7 多处理器集群组合在一起。这些处理器保持了 100% 架构兼容性,并且具有相同的功能(支持 LPAE 和虚拟化扩展,以及 NEON™ 和 VFP 等功能单元),这使得针对一种处理器类型编译的软件应用程序能够在其他处理器上运行,而无需进行修改。
继续阅读白皮书:ARM big.LITTLE 系统的软件技术