匈牙利算法

零、前言

匈牙利算法是一个经典的解决二部图最小权值匹配问题的算法。网上也有不少资料,但是看完之后总觉得有两个核心问题没有解决:算法为什么一定能得到最优匹配?算法复杂度为什么不再是指数级了?

最后读到了python的库函数scipy.optimize.linear_sum_assignment源代码里引用的文章,才算理解算法的实现,再花了一点时间弄清楚了上边两个问题。

继续阅读匈牙利算法

Munkres' Assignment Algorithm

Assignment Problem - Let C be an nxn matrix representing the costs of each of n workers to perform any of n jobs.  The assignment problem is to assign jobs to workers so as to minimize the total cost. Since each worker can perform only one job and each job can be assigned to only one worker the assignments constitute an independent set of the matrix C.

继续阅读Munkres' Assignment Algorithm

求最长公共子序列

求给出的两个序列的最长公共子序列是常见的一个问题。

需要注意的就是 最长公共子串(Longest Common Substring)与 最长公共子序列(Longest Common Subsequence)的区别: 子串要求在原字符串中是连续的,而子序列则只需保持相对顺序,并不要求连续。

解法如下:

参考链接


最长递增子序列(Longest Increasing Subsequence)

最长递增子序列的解法,可以转化为 求最长公共子序列,也就是生成从目标序列从小到大排序之后的新序列,然后计算原始序列与新序列的 最长公共子序列但是遇到重复数字的时候,会出现问题也就是这个解法只能解决无重复数字的最长递增子序列

另外需要注意的就是 最长公共子串(Longest Common Substring)与 最长公共子序列(Longest Common Subsequence)的区别: 子串要求在原字符串中是连续的,而子序列则只需保持相对顺序,并不要求连续。

整个的求解过程其实很好理解:

  • 假定要计算的序列为 K = {K1,K2,K3,……,Kn,Kn+1,……,Km}
  • 初始化计数数组 N = {N1,N2,N3,……,Nn,Nn+1,……,Nm} ,(计数数组跟序列的长度相同,Kn 的最长递增子序列长度计数对应于 Nn)用来记录最长递增子序列的长度,每个项的初始化值都设置为 1即使最小的项,项本身也算一个长度,因此最小的长度是 1
  • 必须从头部(K1)开始遍历
  • 当计算 Kn 结尾的最长递增子序列的时候,只要遍历序列 K 的前 [0 ~ n-1] 个项,找到数值 小于(或者小于等于Kn必须遍历,Kn 之前的最长递增子序列不一定是 Kn-1 对应的 Nn-1 ),并且在计数数组 N 中对应的计数最大的项 Ni ,然后 Nn = Ni + 1

本方法的时间复杂度是 O(n2)

例子:

设数组 K = { 2, 5, 1, 5, 4, 5 }  那么求最长递增子序列的代码如下:

第二个测试用例的数据如下:

涉及到的面试题目如下类型:

 
梅花桩问题

合唱队问题

合唱队问题其实是 求最长递增子序列 与 最长递减子序列 的 和 最大。

最长递减子序列的求法其实就是把原始序列反序,然后 求最长递增子序列 然后把最后的结果反序即可。

代码如下:

解法介绍

参考链接


兔子生兔子问题详解(斐波那契数列)

有一只兔子,从出生后第3个月起每个月都生一只兔子,小兔子长到第三个月后每个月又生一只兔子,假如兔子都不死,问每个月的兔子总数为多少?

斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波那契数列以如下被以递推的方法定义:F(1)=1,F(2)=1, F(n)=F(n - 1)+F(n - 2)(≥ 3,∈ N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从 1963 年起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。

这个问题可能我比较笨,看大多数解释都是一句话,f(n) = f(n-1) + f(n-2),但是总有点想不明白这个。列了个表格才看清楚咋回事。

月份 1 2 3 4 5 6 7
兔子总数 1 1 2 3 5 8 13
具有生育能力兔子 0 0 1 1 2 3 5

如果这个月是第n个月,那要求这个月兔子的总数,其实就是上个月的兔子总数加上新生出来的兔子。也就是f(n) = f(n-1) + x。这个x是比较难理解的地方。那这个月到底新生出来多少兔子呢?这就是求这个月已经有生育能力的兔子是多少,上上个月所有的兔子就是这个月所有的有生育能力的兔子,这里可以结合表格推一推就很好理解了。所以x就是f(n-2)。

因此可以得到递推f(n) = f(n-1) + f(n-2)。

其实比较简单的问题,不过自己光凭笨脑子想,突然没想明白,记一下这个思考过程。

还有就是牛客网上的高赞答案详解:

有人是以a表示一个月的兔子,b表示两个月的兔子,c表示三个月的兔子(原文这么注释的),我因为这个注释半天没看懂,后来明白了,c意思是已经成熟的兔子,也就是表示3个月及以上的兔子,也就是说c表示能生兔子的兔子。

那就可以以月份循环,每到达新的一个月,b都会成熟,所以c+=b,c就更新了,仍然表示所有成熟了的兔子,b怎么更新呢?b其实就是上个月那些成熟度是1个月的兔子,所以再更新b,用b=a;a呢?a就是现在更新后的c,因为更新后的c表示这个月成熟了的兔子,那这些兔子都会生一只新的兔子,新兔子就是成熟度为1个月的,所以用a=c。这样现在这个月的兔子总数就是a+b+c。

这是我自己没找到注释,自己总结出来的答案详解,这个方法比递归复杂度低,空间占用更是比用数组先去存要少很多。

参考链接


卷积与反卷积、步长(stride)与重叠(overlap)及output的大小

1. 卷积神经网络的基础概念

        卷积神经网络是一种专门用来处理具有类似网络结果的数据的神经网络。至少在网络的一层中使用卷积运算来替代一般的矩阵乘法运算的神经网络。

        最核心的几个思想:稀疏交互、参数共享、等变表示(通俗成为平移不变性)。根本目的说白了就是为了节省运算时间和空间。那接下来看一下是怎么实现的。

1.0 卷积

         用一张图展示一下,卷积的计算。element-wise multiply 然后再相加。

继续阅读卷积与反卷积、步长(stride)与重叠(overlap)及output的大小

macOS Mojave(10.14.4)系统Octave 5.1.0使用pause()函数无法响应按键事件

目前 ( 2019/04/24 ),在 macOS Mojave (10.14.4)系统上使用 brew install octave ,安装 Octave 5.1.0 之后,使用 pause() 函数无法在点击键盘之后继续执行,除了 Ctrl + C 之外任意键都不响应。正常情况下,点击任意按键之后,应该继续执行后续的代码。

这个是目前使用 brew 安装的 Octave 5.1.0 在编译的时候,关联的库是 glibc 2.28 之后的版本。这个版本上 glibc 2.28 的某些行为发生变动。具体的讨论信息,参考 bug #55029: pause() with no arguments does not return like kbhit() with glibc 2.28 上的讨论。本质就是 glibc 2.28 之后的版本要求应用程序在接收信息结束( EOF )之后,主动调用 clearerr (stdin); ,否则会收不到后续的按键通知。这个 BUGOctave 5.2 版本被修复,但是这个版本何时发布,暂时不定。

目前的修复方式为要求 brew 从最新版本的代码编译安装,而不是安装已发布版本,如下:

修改下载的编译配置文件,并且关闭文档编译( 目前文档编译会失败),也就是增加  --disable-docs 这个编译参数。

调整之后的编译脚本如下:

参考链接